|
|
|
@ -30,6 +30,7 @@ logging.getLogger('pyomo.core').setLevel(logging.ERROR)
|
|
|
|
|
|
|
|
|
|
n_jobs = 10
|
|
|
|
|
time_limit = 300
|
|
|
|
|
internal_solver = "gurobi"
|
|
|
|
|
|
|
|
|
|
args = docopt(__doc__)
|
|
|
|
|
basepath = args["<challenge>"]
|
|
|
|
@ -52,9 +53,11 @@ def train():
|
|
|
|
|
problem_name, challenge_name = args["<challenge>"].split("/")
|
|
|
|
|
pkg = importlib.import_module("miplearn.problems.%s" % problem_name)
|
|
|
|
|
challenge = getattr(pkg, challenge_name)()
|
|
|
|
|
train_instances = challenge.training_instances[:10]
|
|
|
|
|
test_instances = challenge.test_instances[:10]
|
|
|
|
|
solver = LearningSolver(time_limit=time_limit, components={})
|
|
|
|
|
train_instances = challenge.training_instances
|
|
|
|
|
test_instances = challenge.test_instances
|
|
|
|
|
solver = LearningSolver(time_limit=time_limit,
|
|
|
|
|
solver=internal_solver,
|
|
|
|
|
components={})
|
|
|
|
|
solver.parallel_solve(train_instances, n_jobs=n_jobs)
|
|
|
|
|
solver.fit(n_jobs=n_jobs)
|
|
|
|
|
save(train_instances, "%s/train_instances.bin" % basepath)
|
|
|
|
@ -157,4 +160,4 @@ if __name__ == "__main__":
|
|
|
|
|
#if args["test-ml"]:
|
|
|
|
|
# test_ml()
|
|
|
|
|
#if args["charts"]:
|
|
|
|
|
# charts()
|
|
|
|
|
# charts()
|
|
|
|
|