mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Objective: Rewrite sample_evaluate
This commit is contained in:
@@ -14,96 +14,6 @@ from tests.fixtures.knapsack import get_knapsack_instance
|
||||
import numpy as np
|
||||
|
||||
|
||||
# def test_x_y_predict() -> None:
|
||||
# # Construct instance
|
||||
# instance = cast(Instance, Mock(spec=Instance))
|
||||
# instance.get_instance_features = Mock( # type: ignore
|
||||
# return_value=[1.0, 2.0],
|
||||
# )
|
||||
# instance.training_data = [
|
||||
# {
|
||||
# "Lower bound": 1.0,
|
||||
# "Upper bound": 2.0,
|
||||
# "LP value": 3.0,
|
||||
# },
|
||||
# {
|
||||
# "Lower bound": 1.5,
|
||||
# "Upper bound": 2.2,
|
||||
# "LP value": 3.4,
|
||||
# },
|
||||
# ]
|
||||
#
|
||||
# # Construct mock regressors
|
||||
# lb_regressor = Mock(spec=Regressor)
|
||||
# lb_regressor.predict = Mock(return_value=np.array([[5.0], [6.0]]))
|
||||
# lb_regressor.clone = lambda: lb_regressor
|
||||
# ub_regressor = Mock(spec=Regressor)
|
||||
# ub_regressor.predict = Mock(return_value=np.array([[3.0], [3.0]]))
|
||||
# ub_regressor.clone = lambda: ub_regressor
|
||||
# comp = ObjectiveValueComponent(
|
||||
# lb_regressor=lb_regressor,
|
||||
# ub_regressor=ub_regressor,
|
||||
# )
|
||||
#
|
||||
# # Should build x correctly
|
||||
# x_expected = np.array([[1.0, 2.0, 3.0], [1.0, 2.0, 3.4]])
|
||||
# assert_array_equal(comp.x([instance]), x_expected)
|
||||
#
|
||||
# # Should build y correctly
|
||||
# y_actual = comp.y([instance])
|
||||
# y_expected_lb = np.array([[1.0], [1.5]])
|
||||
# y_expected_ub = np.array([[2.0], [2.2]])
|
||||
# assert_array_equal(y_actual["Lower bound"], y_expected_lb)
|
||||
# assert_array_equal(y_actual["Upper bound"], y_expected_ub)
|
||||
#
|
||||
# # Should pass arrays to regressors
|
||||
# comp.fit([instance])
|
||||
# assert_array_equal(lb_regressor.fit.call_args[0][0], x_expected)
|
||||
# assert_array_equal(lb_regressor.fit.call_args[0][1], y_expected_lb)
|
||||
# assert_array_equal(ub_regressor.fit.call_args[0][0], x_expected)
|
||||
# assert_array_equal(ub_regressor.fit.call_args[0][1], y_expected_ub)
|
||||
#
|
||||
# # Should return predictions
|
||||
# pred = comp.predict([instance])
|
||||
# assert_array_equal(lb_regressor.predict.call_args[0][0], x_expected)
|
||||
# assert_array_equal(ub_regressor.predict.call_args[0][0], x_expected)
|
||||
# assert pred == {
|
||||
# "Lower bound": [5.0, 6.0],
|
||||
# "Upper bound": [3.0, 3.0],
|
||||
# }
|
||||
|
||||
|
||||
# def test_obj_evaluate():
|
||||
# instances, models = get_test_pyomo_instances()
|
||||
# reg = Mock(spec=Regressor)
|
||||
# reg.predict = Mock(return_value=np.array([[1000.0], [1000.0]]))
|
||||
# reg.clone = lambda: reg
|
||||
# comp = ObjectiveValueComponent(
|
||||
# lb_regressor=reg,
|
||||
# ub_regressor=reg,
|
||||
# )
|
||||
# comp.fit(instances)
|
||||
# ev = comp.evaluate(instances)
|
||||
# assert ev == {
|
||||
# "Lower bound": {
|
||||
# "Explained variance": 0.0,
|
||||
# "Max error": 183.0,
|
||||
# "Mean absolute error": 126.5,
|
||||
# "Mean squared error": 19194.5,
|
||||
# "Median absolute error": 126.5,
|
||||
# "R2": -5.012843605607331,
|
||||
# },
|
||||
# "Upper bound": {
|
||||
# "Explained variance": 0.0,
|
||||
# "Max error": 183.0,
|
||||
# "Mean absolute error": 126.5,
|
||||
# "Mean squared error": 19194.5,
|
||||
# "Median absolute error": 126.5,
|
||||
# "R2": -5.012843605607331,
|
||||
# },
|
||||
# }
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def features() -> Features:
|
||||
return {
|
||||
@@ -274,6 +184,29 @@ def test_sample_predict_without_ub(
|
||||
assert_array_equal(comp.lb_regressor.predict.call_args[0][0], x["Lower bound"])
|
||||
|
||||
|
||||
def test_sample_evaluate(features: Features, sample: TrainingSample) -> None:
|
||||
comp = ObjectiveValueComponent()
|
||||
comp.lb_regressor = Mock(spec=Regressor)
|
||||
comp.lb_regressor.predict = lambda _: np.array([[1.05]])
|
||||
comp.ub_regressor = Mock(spec=Regressor)
|
||||
comp.ub_regressor.predict = lambda _: np.array([[2.50]])
|
||||
ev = comp.sample_evaluate(features, sample)
|
||||
assert ev == {
|
||||
"Lower bound": {
|
||||
"Actual value": 1.0,
|
||||
"Predicted value": 1.05,
|
||||
"Absolute error": 0.05,
|
||||
"Relative error": 0.05,
|
||||
},
|
||||
"Upper bound": {
|
||||
"Actual value": 2.0,
|
||||
"Predicted value": 2.50,
|
||||
"Absolute error": 0.5,
|
||||
"Relative error": 0.25,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def test_usage() -> None:
|
||||
solver = LearningSolver(components=[ObjectiveValueComponent()])
|
||||
instance = get_knapsack_instance(GurobiPyomoSolver())
|
||||
|
||||
Reference in New Issue
Block a user