mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-08 02:18:51 -06:00
Add types to InternalSolver
This commit is contained in:
@@ -1,14 +1,22 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
import logging
|
||||
import re
|
||||
import sys
|
||||
import logging
|
||||
from io import StringIO
|
||||
from random import randint
|
||||
from typing import List, Any, Dict, Union
|
||||
|
||||
from . import RedirectOutput
|
||||
from .internal import InternalSolver
|
||||
from .internal import (
|
||||
InternalSolver,
|
||||
LPSolveStats,
|
||||
IterationCallback,
|
||||
LazyCallback,
|
||||
MIPSolveStats,
|
||||
)
|
||||
from .. import Instance
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -35,13 +43,14 @@ class GurobiSolver(InternalSolver):
|
||||
if params is None:
|
||||
params = {}
|
||||
params["InfUnbdInfo"] = True
|
||||
from gurobipy import GRB
|
||||
import gurobipy
|
||||
|
||||
self.GRB = GRB
|
||||
self.gp = gurobipy
|
||||
self.GRB = gurobipy.GRB
|
||||
self.instance = None
|
||||
self.model = None
|
||||
self.params = params
|
||||
self._all_vars = None
|
||||
self._all_vars: Dict = {}
|
||||
self._bin_vars = None
|
||||
self.cb_where = None
|
||||
assert lazy_cb_frequency in [1, 2]
|
||||
@@ -50,10 +59,15 @@ class GurobiSolver(InternalSolver):
|
||||
else:
|
||||
self.lazy_cb_where = [self.GRB.Callback.MIPSOL, self.GRB.Callback.MIPNODE]
|
||||
|
||||
def set_instance(self, instance, model=None):
|
||||
def set_instance(
|
||||
self,
|
||||
instance: Instance,
|
||||
model: Any = None,
|
||||
) -> None:
|
||||
self._raise_if_callback()
|
||||
if model is None:
|
||||
model = instance.to_model()
|
||||
assert isinstance(model, self.gp.Model)
|
||||
self.instance = instance
|
||||
self.model = model
|
||||
self.model.update()
|
||||
@@ -67,7 +81,7 @@ class GurobiSolver(InternalSolver):
|
||||
self._all_vars = {}
|
||||
self._bin_vars = {}
|
||||
for var in self.model.getVars():
|
||||
m = re.search(r"([^[]*)\[(.*)\]", var.varName)
|
||||
m = re.search(r"([^[]*)\[(.*)]", var.varName)
|
||||
if m is None:
|
||||
name = var.varName
|
||||
idx = [0]
|
||||
@@ -93,9 +107,12 @@ class GurobiSolver(InternalSolver):
|
||||
if "seed" not in [k.lower() for k in self.params.keys()]:
|
||||
self.model.setParam("Seed", randint(0, 1_000_000))
|
||||
|
||||
def solve_lp(self, tee=False):
|
||||
def solve_lp(
|
||||
self,
|
||||
tee: bool = False,
|
||||
) -> LPSolveStats:
|
||||
self._raise_if_callback()
|
||||
streams = [StringIO()]
|
||||
streams: List[Any] = [StringIO()]
|
||||
if tee:
|
||||
streams += [sys.stdout]
|
||||
self._apply_params(streams)
|
||||
@@ -110,9 +127,17 @@ class GurobiSolver(InternalSolver):
|
||||
for (idx, var) in vardict.items():
|
||||
var.vtype = self.GRB.BINARY
|
||||
log = streams[0].getvalue()
|
||||
return {"Optimal value": self.model.objVal, "Log": log}
|
||||
return {
|
||||
"Optimal value": self.model.objVal,
|
||||
"Log": log,
|
||||
}
|
||||
|
||||
def solve(self, tee=False, iteration_cb=None, lazy_cb=None):
|
||||
def solve(
|
||||
self,
|
||||
tee: bool = False,
|
||||
iteration_cb: IterationCallback = None,
|
||||
lazy_cb: LazyCallback = None,
|
||||
) -> MIPSolveStats:
|
||||
self._raise_if_callback()
|
||||
|
||||
def cb_wrapper(cb_model, cb_where):
|
||||
@@ -129,7 +154,7 @@ class GurobiSolver(InternalSolver):
|
||||
self.params["LazyConstraints"] = 1
|
||||
total_wallclock_time = 0
|
||||
total_nodes = 0
|
||||
streams = [StringIO()]
|
||||
streams: List[Any] = [StringIO()]
|
||||
if tee:
|
||||
streams += [sys.stdout]
|
||||
self._apply_params(streams)
|
||||
@@ -155,15 +180,42 @@ class GurobiSolver(InternalSolver):
|
||||
sense = "max"
|
||||
lb = self.model.objVal
|
||||
ub = self.model.objBound
|
||||
return {
|
||||
stats: MIPSolveStats = {
|
||||
"Lower bound": lb,
|
||||
"Upper bound": ub,
|
||||
"Wallclock time": total_wallclock_time,
|
||||
"Nodes": total_nodes,
|
||||
"Sense": sense,
|
||||
"Log": log,
|
||||
"Warm start value": self._extract_warm_start_value(log),
|
||||
}
|
||||
ws_value = self._extract_warm_start_value(log)
|
||||
if ws_value is not None:
|
||||
stats["Warm start value"] = ws_value
|
||||
return stats
|
||||
|
||||
def get_solution(self) -> Dict:
|
||||
self._raise_if_callback()
|
||||
solution: Dict = {}
|
||||
for (varname, vardict) in self._all_vars.items():
|
||||
solution[varname] = {}
|
||||
for (idx, var) in vardict.items():
|
||||
solution[varname][idx] = var.x
|
||||
return solution
|
||||
|
||||
def set_warm_start(self, solution: Dict) -> None:
|
||||
self._raise_if_callback()
|
||||
self._clear_warm_start()
|
||||
count_fixed, count_total = 0, 0
|
||||
for (varname, vardict) in solution.items():
|
||||
for (idx, value) in vardict.items():
|
||||
count_total += 1
|
||||
if value is not None:
|
||||
count_fixed += 1
|
||||
self._all_vars[varname][idx].start = value
|
||||
logger.info(
|
||||
"Setting start values for %d variables (out of %d)"
|
||||
% (count_fixed, count_total)
|
||||
)
|
||||
|
||||
def get_sense(self):
|
||||
if self.model.modelSense == 1:
|
||||
@@ -171,16 +223,6 @@ class GurobiSolver(InternalSolver):
|
||||
else:
|
||||
return "max"
|
||||
|
||||
def get_solution(self):
|
||||
self._raise_if_callback()
|
||||
|
||||
solution = {}
|
||||
for (varname, vardict) in self._all_vars.items():
|
||||
solution[varname] = {}
|
||||
for (idx, var) in vardict.items():
|
||||
solution[varname][idx] = var.x
|
||||
return solution
|
||||
|
||||
def get_value(self, var_name, index):
|
||||
var = self._all_vars[var_name][index]
|
||||
return self._get_value(var)
|
||||
@@ -229,25 +271,10 @@ class GurobiSolver(InternalSolver):
|
||||
else:
|
||||
self.model.addConstr(constraint, name=name)
|
||||
|
||||
def set_warm_start(self, solution):
|
||||
self._raise_if_callback()
|
||||
count_fixed, count_total = 0, 0
|
||||
for (varname, vardict) in solution.items():
|
||||
for (idx, value) in vardict.items():
|
||||
count_total += 1
|
||||
if value is not None:
|
||||
count_fixed += 1
|
||||
self._all_vars[varname][idx].start = value
|
||||
logger.info(
|
||||
"Setting start values for %d variables (out of %d)"
|
||||
% (count_fixed, count_total)
|
||||
)
|
||||
|
||||
def clear_warm_start(self):
|
||||
self._raise_if_callback()
|
||||
for (varname, vardict) in self._all_vars:
|
||||
def _clear_warm_start(self):
|
||||
for (varname, vardict) in self._all_vars.items():
|
||||
for (idx, var) in vardict.items():
|
||||
var[idx].start = self.GRB.UNDEFINED
|
||||
var.start = self.GRB.UNDEFINED
|
||||
|
||||
def fix(self, solution):
|
||||
self._raise_if_callback()
|
||||
@@ -311,17 +338,14 @@ class GurobiSolver(InternalSolver):
|
||||
self.model = self.model.relax()
|
||||
self._update_vars()
|
||||
|
||||
def set_branching_priorities(self, priorities):
|
||||
self._raise_if_callback()
|
||||
logger.warning("set_branching_priorities not implemented")
|
||||
|
||||
def _extract_warm_start_value(self, log):
|
||||
ws = self.__extract(log, "MIP start with objective ([0-9.e+-]*)")
|
||||
if ws is not None:
|
||||
ws = float(ws)
|
||||
return ws
|
||||
|
||||
def __extract(self, log, regexp, default=None):
|
||||
@staticmethod
|
||||
def __extract(log, regexp, default=None):
|
||||
value = default
|
||||
for line in log.splitlines():
|
||||
matches = re.findall(regexp, line)
|
||||
|
||||
Reference in New Issue
Block a user