|
|
@ -1,14 +1,22 @@
|
|
|
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
|
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import re
|
|
|
|
import re
|
|
|
|
import sys
|
|
|
|
import sys
|
|
|
|
import logging
|
|
|
|
|
|
|
|
from io import StringIO
|
|
|
|
from io import StringIO
|
|
|
|
from random import randint
|
|
|
|
from random import randint
|
|
|
|
|
|
|
|
from typing import List, Any, Dict, Union
|
|
|
|
|
|
|
|
|
|
|
|
from . import RedirectOutput
|
|
|
|
from . import RedirectOutput
|
|
|
|
from .internal import InternalSolver
|
|
|
|
from .internal import (
|
|
|
|
|
|
|
|
InternalSolver,
|
|
|
|
|
|
|
|
LPSolveStats,
|
|
|
|
|
|
|
|
IterationCallback,
|
|
|
|
|
|
|
|
LazyCallback,
|
|
|
|
|
|
|
|
MIPSolveStats,
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
from .. import Instance
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
@ -35,13 +43,14 @@ class GurobiSolver(InternalSolver):
|
|
|
|
if params is None:
|
|
|
|
if params is None:
|
|
|
|
params = {}
|
|
|
|
params = {}
|
|
|
|
params["InfUnbdInfo"] = True
|
|
|
|
params["InfUnbdInfo"] = True
|
|
|
|
from gurobipy import GRB
|
|
|
|
import gurobipy
|
|
|
|
|
|
|
|
|
|
|
|
self.GRB = GRB
|
|
|
|
self.gp = gurobipy
|
|
|
|
|
|
|
|
self.GRB = gurobipy.GRB
|
|
|
|
self.instance = None
|
|
|
|
self.instance = None
|
|
|
|
self.model = None
|
|
|
|
self.model = None
|
|
|
|
self.params = params
|
|
|
|
self.params = params
|
|
|
|
self._all_vars = None
|
|
|
|
self._all_vars: Dict = {}
|
|
|
|
self._bin_vars = None
|
|
|
|
self._bin_vars = None
|
|
|
|
self.cb_where = None
|
|
|
|
self.cb_where = None
|
|
|
|
assert lazy_cb_frequency in [1, 2]
|
|
|
|
assert lazy_cb_frequency in [1, 2]
|
|
|
@ -50,10 +59,15 @@ class GurobiSolver(InternalSolver):
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
self.lazy_cb_where = [self.GRB.Callback.MIPSOL, self.GRB.Callback.MIPNODE]
|
|
|
|
self.lazy_cb_where = [self.GRB.Callback.MIPSOL, self.GRB.Callback.MIPNODE]
|
|
|
|
|
|
|
|
|
|
|
|
def set_instance(self, instance, model=None):
|
|
|
|
def set_instance(
|
|
|
|
|
|
|
|
self,
|
|
|
|
|
|
|
|
instance: Instance,
|
|
|
|
|
|
|
|
model: Any = None,
|
|
|
|
|
|
|
|
) -> None:
|
|
|
|
self._raise_if_callback()
|
|
|
|
self._raise_if_callback()
|
|
|
|
if model is None:
|
|
|
|
if model is None:
|
|
|
|
model = instance.to_model()
|
|
|
|
model = instance.to_model()
|
|
|
|
|
|
|
|
assert isinstance(model, self.gp.Model)
|
|
|
|
self.instance = instance
|
|
|
|
self.instance = instance
|
|
|
|
self.model = model
|
|
|
|
self.model = model
|
|
|
|
self.model.update()
|
|
|
|
self.model.update()
|
|
|
@ -67,7 +81,7 @@ class GurobiSolver(InternalSolver):
|
|
|
|
self._all_vars = {}
|
|
|
|
self._all_vars = {}
|
|
|
|
self._bin_vars = {}
|
|
|
|
self._bin_vars = {}
|
|
|
|
for var in self.model.getVars():
|
|
|
|
for var in self.model.getVars():
|
|
|
|
m = re.search(r"([^[]*)\[(.*)\]", var.varName)
|
|
|
|
m = re.search(r"([^[]*)\[(.*)]", var.varName)
|
|
|
|
if m is None:
|
|
|
|
if m is None:
|
|
|
|
name = var.varName
|
|
|
|
name = var.varName
|
|
|
|
idx = [0]
|
|
|
|
idx = [0]
|
|
|
@ -93,9 +107,12 @@ class GurobiSolver(InternalSolver):
|
|
|
|
if "seed" not in [k.lower() for k in self.params.keys()]:
|
|
|
|
if "seed" not in [k.lower() for k in self.params.keys()]:
|
|
|
|
self.model.setParam("Seed", randint(0, 1_000_000))
|
|
|
|
self.model.setParam("Seed", randint(0, 1_000_000))
|
|
|
|
|
|
|
|
|
|
|
|
def solve_lp(self, tee=False):
|
|
|
|
def solve_lp(
|
|
|
|
|
|
|
|
self,
|
|
|
|
|
|
|
|
tee: bool = False,
|
|
|
|
|
|
|
|
) -> LPSolveStats:
|
|
|
|
self._raise_if_callback()
|
|
|
|
self._raise_if_callback()
|
|
|
|
streams = [StringIO()]
|
|
|
|
streams: List[Any] = [StringIO()]
|
|
|
|
if tee:
|
|
|
|
if tee:
|
|
|
|
streams += [sys.stdout]
|
|
|
|
streams += [sys.stdout]
|
|
|
|
self._apply_params(streams)
|
|
|
|
self._apply_params(streams)
|
|
|
@ -110,9 +127,17 @@ class GurobiSolver(InternalSolver):
|
|
|
|
for (idx, var) in vardict.items():
|
|
|
|
for (idx, var) in vardict.items():
|
|
|
|
var.vtype = self.GRB.BINARY
|
|
|
|
var.vtype = self.GRB.BINARY
|
|
|
|
log = streams[0].getvalue()
|
|
|
|
log = streams[0].getvalue()
|
|
|
|
return {"Optimal value": self.model.objVal, "Log": log}
|
|
|
|
return {
|
|
|
|
|
|
|
|
"Optimal value": self.model.objVal,
|
|
|
|
|
|
|
|
"Log": log,
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def solve(self, tee=False, iteration_cb=None, lazy_cb=None):
|
|
|
|
def solve(
|
|
|
|
|
|
|
|
self,
|
|
|
|
|
|
|
|
tee: bool = False,
|
|
|
|
|
|
|
|
iteration_cb: IterationCallback = None,
|
|
|
|
|
|
|
|
lazy_cb: LazyCallback = None,
|
|
|
|
|
|
|
|
) -> MIPSolveStats:
|
|
|
|
self._raise_if_callback()
|
|
|
|
self._raise_if_callback()
|
|
|
|
|
|
|
|
|
|
|
|
def cb_wrapper(cb_model, cb_where):
|
|
|
|
def cb_wrapper(cb_model, cb_where):
|
|
|
@ -129,7 +154,7 @@ class GurobiSolver(InternalSolver):
|
|
|
|
self.params["LazyConstraints"] = 1
|
|
|
|
self.params["LazyConstraints"] = 1
|
|
|
|
total_wallclock_time = 0
|
|
|
|
total_wallclock_time = 0
|
|
|
|
total_nodes = 0
|
|
|
|
total_nodes = 0
|
|
|
|
streams = [StringIO()]
|
|
|
|
streams: List[Any] = [StringIO()]
|
|
|
|
if tee:
|
|
|
|
if tee:
|
|
|
|
streams += [sys.stdout]
|
|
|
|
streams += [sys.stdout]
|
|
|
|
self._apply_params(streams)
|
|
|
|
self._apply_params(streams)
|
|
|
@ -155,32 +180,49 @@ class GurobiSolver(InternalSolver):
|
|
|
|
sense = "max"
|
|
|
|
sense = "max"
|
|
|
|
lb = self.model.objVal
|
|
|
|
lb = self.model.objVal
|
|
|
|
ub = self.model.objBound
|
|
|
|
ub = self.model.objBound
|
|
|
|
return {
|
|
|
|
stats: MIPSolveStats = {
|
|
|
|
"Lower bound": lb,
|
|
|
|
"Lower bound": lb,
|
|
|
|
"Upper bound": ub,
|
|
|
|
"Upper bound": ub,
|
|
|
|
"Wallclock time": total_wallclock_time,
|
|
|
|
"Wallclock time": total_wallclock_time,
|
|
|
|
"Nodes": total_nodes,
|
|
|
|
"Nodes": total_nodes,
|
|
|
|
"Sense": sense,
|
|
|
|
"Sense": sense,
|
|
|
|
"Log": log,
|
|
|
|
"Log": log,
|
|
|
|
"Warm start value": self._extract_warm_start_value(log),
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ws_value = self._extract_warm_start_value(log)
|
|
|
|
|
|
|
|
if ws_value is not None:
|
|
|
|
|
|
|
|
stats["Warm start value"] = ws_value
|
|
|
|
|
|
|
|
return stats
|
|
|
|
|
|
|
|
|
|
|
|
def get_sense(self):
|
|
|
|
def get_solution(self) -> Dict:
|
|
|
|
if self.model.modelSense == 1:
|
|
|
|
|
|
|
|
return "min"
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
return "max"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_solution(self):
|
|
|
|
|
|
|
|
self._raise_if_callback()
|
|
|
|
self._raise_if_callback()
|
|
|
|
|
|
|
|
solution: Dict = {}
|
|
|
|
solution = {}
|
|
|
|
|
|
|
|
for (varname, vardict) in self._all_vars.items():
|
|
|
|
for (varname, vardict) in self._all_vars.items():
|
|
|
|
solution[varname] = {}
|
|
|
|
solution[varname] = {}
|
|
|
|
for (idx, var) in vardict.items():
|
|
|
|
for (idx, var) in vardict.items():
|
|
|
|
solution[varname][idx] = var.x
|
|
|
|
solution[varname][idx] = var.x
|
|
|
|
return solution
|
|
|
|
return solution
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def set_warm_start(self, solution: Dict) -> None:
|
|
|
|
|
|
|
|
self._raise_if_callback()
|
|
|
|
|
|
|
|
self._clear_warm_start()
|
|
|
|
|
|
|
|
count_fixed, count_total = 0, 0
|
|
|
|
|
|
|
|
for (varname, vardict) in solution.items():
|
|
|
|
|
|
|
|
for (idx, value) in vardict.items():
|
|
|
|
|
|
|
|
count_total += 1
|
|
|
|
|
|
|
|
if value is not None:
|
|
|
|
|
|
|
|
count_fixed += 1
|
|
|
|
|
|
|
|
self._all_vars[varname][idx].start = value
|
|
|
|
|
|
|
|
logger.info(
|
|
|
|
|
|
|
|
"Setting start values for %d variables (out of %d)"
|
|
|
|
|
|
|
|
% (count_fixed, count_total)
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_sense(self):
|
|
|
|
|
|
|
|
if self.model.modelSense == 1:
|
|
|
|
|
|
|
|
return "min"
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
return "max"
|
|
|
|
|
|
|
|
|
|
|
|
def get_value(self, var_name, index):
|
|
|
|
def get_value(self, var_name, index):
|
|
|
|
var = self._all_vars[var_name][index]
|
|
|
|
var = self._all_vars[var_name][index]
|
|
|
|
return self._get_value(var)
|
|
|
|
return self._get_value(var)
|
|
|
@ -229,25 +271,10 @@ class GurobiSolver(InternalSolver):
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
self.model.addConstr(constraint, name=name)
|
|
|
|
self.model.addConstr(constraint, name=name)
|
|
|
|
|
|
|
|
|
|
|
|
def set_warm_start(self, solution):
|
|
|
|
def _clear_warm_start(self):
|
|
|
|
self._raise_if_callback()
|
|
|
|
for (varname, vardict) in self._all_vars.items():
|
|
|
|
count_fixed, count_total = 0, 0
|
|
|
|
|
|
|
|
for (varname, vardict) in solution.items():
|
|
|
|
|
|
|
|
for (idx, value) in vardict.items():
|
|
|
|
|
|
|
|
count_total += 1
|
|
|
|
|
|
|
|
if value is not None:
|
|
|
|
|
|
|
|
count_fixed += 1
|
|
|
|
|
|
|
|
self._all_vars[varname][idx].start = value
|
|
|
|
|
|
|
|
logger.info(
|
|
|
|
|
|
|
|
"Setting start values for %d variables (out of %d)"
|
|
|
|
|
|
|
|
% (count_fixed, count_total)
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def clear_warm_start(self):
|
|
|
|
|
|
|
|
self._raise_if_callback()
|
|
|
|
|
|
|
|
for (varname, vardict) in self._all_vars:
|
|
|
|
|
|
|
|
for (idx, var) in vardict.items():
|
|
|
|
for (idx, var) in vardict.items():
|
|
|
|
var[idx].start = self.GRB.UNDEFINED
|
|
|
|
var.start = self.GRB.UNDEFINED
|
|
|
|
|
|
|
|
|
|
|
|
def fix(self, solution):
|
|
|
|
def fix(self, solution):
|
|
|
|
self._raise_if_callback()
|
|
|
|
self._raise_if_callback()
|
|
|
@ -311,17 +338,14 @@ class GurobiSolver(InternalSolver):
|
|
|
|
self.model = self.model.relax()
|
|
|
|
self.model = self.model.relax()
|
|
|
|
self._update_vars()
|
|
|
|
self._update_vars()
|
|
|
|
|
|
|
|
|
|
|
|
def set_branching_priorities(self, priorities):
|
|
|
|
|
|
|
|
self._raise_if_callback()
|
|
|
|
|
|
|
|
logger.warning("set_branching_priorities not implemented")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _extract_warm_start_value(self, log):
|
|
|
|
def _extract_warm_start_value(self, log):
|
|
|
|
ws = self.__extract(log, "MIP start with objective ([0-9.e+-]*)")
|
|
|
|
ws = self.__extract(log, "MIP start with objective ([0-9.e+-]*)")
|
|
|
|
if ws is not None:
|
|
|
|
if ws is not None:
|
|
|
|
ws = float(ws)
|
|
|
|
ws = float(ws)
|
|
|
|
return ws
|
|
|
|
return ws
|
|
|
|
|
|
|
|
|
|
|
|
def __extract(self, log, regexp, default=None):
|
|
|
|
@staticmethod
|
|
|
|
|
|
|
|
def __extract(log, regexp, default=None):
|
|
|
|
value = default
|
|
|
|
value = default
|
|
|
|
for line in log.splitlines():
|
|
|
|
for line in log.splitlines():
|
|
|
|
matches = re.findall(regexp, line)
|
|
|
|
matches = re.findall(regexp, line)
|
|
|
|