Refer to variables by varname instead of (vname, index)

This commit is contained in:
2021-04-07 10:56:31 -05:00
parent 856b595d5e
commit 1cf6124757
22 changed files with 467 additions and 516 deletions

View File

@@ -7,7 +7,6 @@ from typing import (
Dict,
List,
Hashable,
Optional,
Any,
TYPE_CHECKING,
Tuple,
@@ -23,8 +22,9 @@ from miplearn.components.component import Component
from miplearn.features import TrainingSample, Features
from miplearn.instance.base import Instance
from miplearn.types import (
Solution,
LearningSolveStats,
Category,
Solution,
)
logger = logging.getLogger(__name__)
@@ -84,15 +84,14 @@ class PrimalSolutionComponent(Component):
stats["Primal: Free"] = 0
stats["Primal: Zero"] = 0
stats["Primal: One"] = 0
for (var, var_dict) in solution.items():
for (idx, value) in var_dict.items():
if value is None:
stats["Primal: Free"] += 1
for (var_name, value) in solution.items():
if value is None:
stats["Primal: Free"] += 1
else:
if value < 0.5:
stats["Primal: Zero"] += 1
else:
if value < 0.5:
stats["Primal: Zero"] += 1
else:
stats["Primal: One"] += 1
stats["Primal: One"] += 1
logger.info(
f"Predicted: free: {stats['Primal: Free']}, "
f"zero: {stats['Primal: Zero']}, "
@@ -106,13 +105,6 @@ class PrimalSolutionComponent(Component):
) -> Solution:
assert instance.features.variables is not None
# Initialize empty solution
solution: Solution = {}
for (var_name, var_dict) in instance.features.variables.items():
solution[var_name] = {}
for idx in var_dict.keys():
solution[var_name][idx] = None
# Compute y_pred
x, _ = self.sample_xy(instance, sample)
y_pred = {}
@@ -132,56 +124,52 @@ class PrimalSolutionComponent(Component):
).T
# Convert y_pred into solution
solution: Solution = {v: None for v in instance.features.variables.keys()}
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
for (var_name, var_dict) in instance.features.variables.items():
for (idx, var_features) in var_dict.items():
category = var_features.category
offset = category_offset[category]
category_offset[category] += 1
if y_pred[category][offset, 0]:
solution[var_name][idx] = 0.0
if y_pred[category][offset, 1]:
solution[var_name][idx] = 1.0
for (var_name, var_features) in instance.features.variables.items():
category = var_features.category
offset = category_offset[category]
category_offset[category] += 1
if y_pred[category][offset, 0]:
solution[var_name] = 0.0
if y_pred[category][offset, 1]:
solution[var_name] = 1.0
return solution
@staticmethod
def sample_xy(
self,
instance: Instance,
sample: TrainingSample,
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
) -> Tuple[Dict[Category, List[List[float]]], Dict[Category, List[List[float]]]]:
assert instance.features.variables is not None
x: Dict = {}
y: Dict = {}
solution: Optional[Solution] = None
if sample.solution is not None:
solution = sample.solution
for (var_name, var_dict) in instance.features.variables.items():
for (idx, var_features) in var_dict.items():
category = var_features.category
if category is None:
continue
if category not in x.keys():
x[category] = []
y[category] = []
f: List[float] = []
assert var_features.user_features is not None
f += var_features.user_features
if sample.lp_solution is not None:
lp_value = sample.lp_solution[var_name][idx]
if lp_value is not None:
f += [lp_value]
x[category] += [f]
if solution is not None:
opt_value = solution[var_name][idx]
assert opt_value is not None
assert 0.0 - 1e-5 <= opt_value <= 1.0 + 1e-5, (
f"Variable {var_name} has non-binary value {opt_value} in the "
"optimal solution. Predicting values of non-binary "
"variables is not currently supported. Please set its "
"category to None."
)
y[category] += [[opt_value < 0.5, opt_value >= 0.5]]
for (var_name, var_features) in instance.features.variables.items():
category = var_features.category
if category is None:
continue
if category not in x.keys():
x[category] = []
y[category] = []
f: List[float] = []
assert var_features.user_features is not None
f += var_features.user_features
if sample.lp_solution is not None:
lp_value = sample.lp_solution[var_name]
if lp_value is not None:
f += [lp_value]
x[category] += [f]
if sample.solution is not None:
opt_value = sample.solution[var_name]
assert opt_value is not None
assert 0.0 - 1e-5 <= opt_value <= 1.0 + 1e-5, (
f"Variable {var_name} has non-binary value {opt_value} in the "
"optimal solution. Predicting values of non-binary "
"variables is not currently supported. Please set its "
"category to None."
)
y[category] += [[opt_value < 0.5, opt_value >= 0.5]]
return x, y
def sample_evaluate(
@@ -194,22 +182,19 @@ class PrimalSolutionComponent(Component):
solution_pred = self.sample_predict(instance, sample)
vars_all, vars_one, vars_zero = set(), set(), set()
pred_one_positive, pred_zero_positive = set(), set()
for (varname, var_dict) in solution_actual.items():
if varname not in solution_pred.keys():
continue
for (idx, value_actual) in var_dict.items():
assert value_actual is not None
vars_all.add((varname, idx))
if value_actual > 0.5:
vars_one.add((varname, idx))
for (var_name, value_actual) in solution_actual.items():
assert value_actual is not None
vars_all.add(var_name)
if value_actual > 0.5:
vars_one.add(var_name)
else:
vars_zero.add(var_name)
value_pred = solution_pred[var_name]
if value_pred is not None:
if value_pred > 0.5:
pred_one_positive.add(var_name)
else:
vars_zero.add((varname, idx))
value_pred = solution_pred[varname][idx]
if value_pred is not None:
if value_pred > 0.5:
pred_one_positive.add((varname, idx))
else:
pred_zero_positive.add((varname, idx))
pred_zero_positive.add(var_name)
pred_one_negative = vars_all - pred_one_positive
pred_zero_negative = vars_all - pred_zero_positive
return {