Refer to variables by varname instead of (vname, index)

This commit is contained in:
2021-04-07 10:56:31 -05:00
parent 856b595d5e
commit 1cf6124757
22 changed files with 467 additions and 516 deletions

View File

@@ -10,6 +10,7 @@ import networkx as nx
import pytest
from gurobipy import GRB
from networkx import Graph
from overrides import overrides
from miplearn.components.dynamic_user_cuts import UserCutsComponent
from miplearn.instance.base import Instance
@@ -24,6 +25,7 @@ class GurobiStableSetProblem(Instance):
super().__init__()
self.graph: Graph = graph
@overrides
def to_model(self) -> Any:
model = gp.Model()
x = [model.addVar(vtype=GRB.BINARY) for _ in range(len(self.graph.nodes))]
@@ -32,9 +34,11 @@ class GurobiStableSetProblem(Instance):
model.addConstr(x[e[0]] + x[e[1]] <= 1)
return model
@overrides
def has_user_cuts(self) -> bool:
return True
@overrides
def find_violated_user_cuts(self, model):
assert isinstance(model, gp.Model)
vals = model.cbGetNodeRel(model.getVars())
@@ -44,6 +48,7 @@ class GurobiStableSetProblem(Instance):
violations += [frozenset(clique)]
return violations
@overrides
def build_user_cut(self, model: Any, cid: Hashable) -> Any:
assert isinstance(cid, FrozenSet)
x = model.getVars()

View File

@@ -20,43 +20,37 @@ from miplearn.solvers.learning import LearningSolver
def test_xy() -> None:
features = Features(
variables={
"x": {
0: VariableFeatures(
category="default",
user_features=[0.0, 0.0],
),
1: VariableFeatures(
category=None,
),
2: VariableFeatures(
category="default",
user_features=[1.0, 0.0],
),
3: VariableFeatures(
category="default",
user_features=[1.0, 1.0],
),
}
"x[0]": VariableFeatures(
category="default",
user_features=[0.0, 0.0],
),
"x[1]": VariableFeatures(
category=None,
),
"x[2]": VariableFeatures(
category="default",
user_features=[1.0, 0.0],
),
"x[3]": VariableFeatures(
category="default",
user_features=[1.0, 1.0],
),
}
)
instance = Mock(spec=Instance)
instance.features = features
sample = TrainingSample(
solution={
"x": {
0: 0.0,
1: 1.0,
2: 1.0,
3: 0.0,
}
"x[0]": 0.0,
"x[1]": 1.0,
"x[2]": 1.0,
"x[3]": 0.0,
},
lp_solution={
"x": {
0: 0.1,
1: 0.1,
2: 0.1,
3: 0.1,
}
"x[0]": 0.1,
"x[1]": 0.1,
"x[2]": 0.1,
"x[3]": 0.1,
},
)
x_expected = {
@@ -73,7 +67,7 @@ def test_xy() -> None:
[True, False],
]
}
xy = PrimalSolutionComponent.sample_xy(instance, sample)
xy = PrimalSolutionComponent().sample_xy(instance, sample)
assert xy is not None
x_actual, y_actual = xy
assert x_actual == x_expected
@@ -83,35 +77,31 @@ def test_xy() -> None:
def test_xy_without_lp_solution() -> None:
features = Features(
variables={
"x": {
0: VariableFeatures(
category="default",
user_features=[0.0, 0.0],
),
1: VariableFeatures(
category=None,
),
2: VariableFeatures(
category="default",
user_features=[1.0, 0.0],
),
3: VariableFeatures(
category="default",
user_features=[1.0, 1.0],
),
}
"x[0]": VariableFeatures(
category="default",
user_features=[0.0, 0.0],
),
"x[1]": VariableFeatures(
category=None,
),
"x[2]": VariableFeatures(
category="default",
user_features=[1.0, 0.0],
),
"x[3]": VariableFeatures(
category="default",
user_features=[1.0, 1.0],
),
}
)
instance = Mock(spec=Instance)
instance.features = features
sample = TrainingSample(
solution={
"x": {
0: 0.0,
1: 1.0,
2: 1.0,
3: 0.0,
}
"x[0]": 0.0,
"x[1]": 1.0,
"x[2]": 1.0,
"x[3]": 0.0,
},
)
x_expected = {
@@ -128,7 +118,7 @@ def test_xy_without_lp_solution() -> None:
[True, False],
]
}
xy = PrimalSolutionComponent.sample_xy(instance, sample)
xy = PrimalSolutionComponent().sample_xy(instance, sample)
assert xy is not None
x_actual, y_actual = xy
assert x_actual == x_expected
@@ -150,48 +140,42 @@ def test_predict() -> None:
thr.predict = Mock(return_value=[0.75, 0.75])
features = Features(
variables={
"x": {
0: VariableFeatures(
category="default",
user_features=[0.0, 0.0],
),
1: VariableFeatures(
category="default",
user_features=[0.0, 2.0],
),
2: VariableFeatures(
category="default",
user_features=[2.0, 0.0],
),
}
"x[0]": VariableFeatures(
category="default",
user_features=[0.0, 0.0],
),
"x[1]": VariableFeatures(
category="default",
user_features=[0.0, 2.0],
),
"x[2]": VariableFeatures(
category="default",
user_features=[2.0, 0.0],
),
}
)
instance = Mock(spec=Instance)
instance.features = features
sample = TrainingSample(
lp_solution={
"x": {
0: 0.1,
1: 0.5,
2: 0.9,
}
"x[0]": 0.1,
"x[1]": 0.5,
"x[2]": 0.9,
}
)
x, _ = PrimalSolutionComponent.sample_xy(instance, sample)
x, _ = PrimalSolutionComponent().sample_xy(instance, sample)
comp = PrimalSolutionComponent()
comp.classifiers = {"default": clf}
comp.thresholds = {"default": thr}
solution_actual = comp.sample_predict(instance, sample)
pred = comp.sample_predict(instance, sample)
clf.predict_proba.assert_called_once()
assert_array_equal(x["default"], clf.predict_proba.call_args[0][0])
thr.predict.assert_called_once()
assert_array_equal(x["default"], thr.predict.call_args[0][0])
assert solution_actual == {
"x": {
0: 0.0,
1: None,
2: 1.0,
}
assert pred == {
"x[0]": 0.0,
"x[1]": None,
"x[2]": 1.0,
}
@@ -242,36 +226,30 @@ def test_usage():
def test_evaluate() -> None:
comp = PrimalSolutionComponent()
comp.sample_predict = lambda _, __: { # type: ignore
"x": {
0: 1.0,
1: 0.0,
2: 0.0,
3: None,
4: 1.0,
}
"x[0]": 1.0,
"x[1]": 0.0,
"x[2]": 0.0,
"x[3]": None,
"x[4]": 1.0,
}
features: Features = Features(
variables={
"x": {
0: VariableFeatures(),
1: VariableFeatures(),
2: VariableFeatures(),
3: VariableFeatures(),
4: VariableFeatures(),
}
"x[0]": VariableFeatures(),
"x[1]": VariableFeatures(),
"x[2]": VariableFeatures(),
"x[3]": VariableFeatures(),
"x[4]": VariableFeatures(),
}
)
instance = Mock(spec=Instance)
instance.features = features
sample: TrainingSample = TrainingSample(
solution={
"x": {
0: 1.0,
1: 1.0,
2: 0.0,
3: 1.0,
4: 1.0,
}
"x[0]": 1.0,
"x[1]": 1.0,
"x[2]": 0.0,
"x[3]": 1.0,
"x[4]": 1.0,
}
)
ev = comp.sample_evaluate(instance, sample)