MIPLearn v0.3

This commit is contained in:
2023-06-08 11:25:39 -05:00
parent 6cc253a903
commit 1ea989d48a
172 changed files with 10495 additions and 24812 deletions

View File

@@ -0,0 +1,61 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from typing import List, Any, Callable, Optional
import numpy as np
import sklearn
from sklearn.base import BaseEstimator
from sklearn.utils.multiclass import unique_labels
class MinProbabilityClassifier(BaseEstimator):
"""
Meta-classifier that returns NaN for predictions made by a base classifier that
have probability below a given threshold. More specifically, this meta-classifier
calls base_clf.predict_proba and compares the result against the provided
thresholds. If the probability for one of the classes is above its threshold,
the meta-classifier returns that prediction. Otherwise, it returns NaN.
"""
def __init__(
self,
base_clf: Any,
thresholds: List[float],
clone_fn: Callable[[Any], Any] = sklearn.base.clone,
) -> None:
assert len(thresholds) == 2
self.base_clf = base_clf
self.thresholds = thresholds
self.clone_fn = clone_fn
self.clf_: Optional[Any] = None
self.classes_: Optional[List[Any]] = None
def fit(self, x: np.ndarray, y: np.ndarray) -> None:
assert len(y.shape) == 1
assert len(x.shape) == 2
classes = unique_labels(y)
assert len(classes) == len(self.thresholds)
self.clf_ = self.clone_fn(self.base_clf)
self.clf_.fit(x, y)
self.classes_ = self.clf_.classes_
def predict(self, x: np.ndarray) -> np.ndarray:
assert self.clf_ is not None
assert self.classes_ is not None
y_proba = self.clf_.predict_proba(x)
assert len(y_proba.shape) == 2
assert y_proba.shape[0] == x.shape[0]
assert y_proba.shape[1] == 2
n_samples = x.shape[0]
y_pred = []
for sample_idx in range(n_samples):
yi = float("nan")
for (class_idx, class_val) in enumerate(self.classes_):
if y_proba[sample_idx, class_idx] >= self.thresholds[class_idx]:
yi = class_val
y_pred.append(yi)
return np.array(y_pred)