mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-10 11:28:51 -06:00
MIPLearn v0.3
This commit is contained in:
51
miplearn/classifiers/singleclass.py
Normal file
51
miplearn/classifiers/singleclass.py
Normal file
@@ -0,0 +1,51 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
from typing import Callable, Optional
|
||||
|
||||
import numpy as np
|
||||
import sklearn.base
|
||||
from sklearn.base import BaseEstimator
|
||||
from sklearn.utils.multiclass import unique_labels
|
||||
|
||||
|
||||
class SingleClassFix(BaseEstimator):
|
||||
"""
|
||||
Some sklearn classifiers, such as logistic regression, have issues with datasets
|
||||
that contain a single class. This meta-classifier fixes the issue. If the
|
||||
training data contains a single class, this meta-classifier always returns that
|
||||
class as a prediction. Otherwise, it fits the provided base classifier,
|
||||
and returns its predictions instead.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
base_clf: BaseEstimator,
|
||||
clone_fn: Callable = sklearn.base.clone,
|
||||
):
|
||||
self.base_clf = base_clf
|
||||
self.clf_: Optional[BaseEstimator] = None
|
||||
self.constant_ = None
|
||||
self.classes_ = None
|
||||
self.clone_fn = clone_fn
|
||||
|
||||
def fit(self, x: np.ndarray, y: np.ndarray) -> None:
|
||||
classes = unique_labels(y)
|
||||
if len(classes) == 1:
|
||||
assert classes[0] is not None
|
||||
self.clf_ = None
|
||||
self.constant_ = classes[0]
|
||||
self.classes_ = classes
|
||||
else:
|
||||
self.clf_ = self.clone_fn(self.base_clf)
|
||||
assert self.clf_ is not None
|
||||
self.clf_.fit(x, y)
|
||||
self.constant_ = None
|
||||
self.classes_ = self.clf_.classes_
|
||||
|
||||
def predict(self, x: np.ndarray) -> np.ndarray:
|
||||
if self.constant_ is not None:
|
||||
return np.full(x.shape[0], self.constant_)
|
||||
else:
|
||||
assert self.clf_ is not None
|
||||
return self.clf_.predict(x)
|
||||
Reference in New Issue
Block a user