mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
MIPLearn v0.3
This commit is contained in:
0
miplearn/collectors/__init__.py
Normal file
0
miplearn/collectors/__init__.py
Normal file
86
miplearn/collectors/basic.py
Normal file
86
miplearn/collectors/basic.py
Normal file
@@ -0,0 +1,86 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import json
|
||||
import os
|
||||
from io import StringIO
|
||||
from os.path import exists
|
||||
from typing import Callable, List
|
||||
|
||||
from ..h5 import H5File
|
||||
from ..io import _RedirectOutput, gzip, _to_h5_filename
|
||||
from ..parallel import p_umap
|
||||
|
||||
|
||||
class BasicCollector:
|
||||
def collect(
|
||||
self,
|
||||
filenames: List[str],
|
||||
build_model: Callable,
|
||||
n_jobs: int = 1,
|
||||
progress: bool = False,
|
||||
) -> None:
|
||||
def _collect(data_filename):
|
||||
h5_filename = _to_h5_filename(data_filename)
|
||||
mps_filename = h5_filename.replace(".h5", ".mps")
|
||||
|
||||
if exists(h5_filename):
|
||||
# Try to read optimal solution
|
||||
mip_var_values = None
|
||||
try:
|
||||
with H5File(h5_filename, "r") as h5:
|
||||
mip_var_values = h5.get_array("mip_var_values")
|
||||
except:
|
||||
pass
|
||||
|
||||
if mip_var_values is None:
|
||||
print(f"Removing empty/corrupted h5 file: {h5_filename}")
|
||||
os.remove(h5_filename)
|
||||
else:
|
||||
return
|
||||
|
||||
with H5File(h5_filename, "w") as h5:
|
||||
streams = [StringIO()]
|
||||
with _RedirectOutput(streams):
|
||||
# Load and extract static features
|
||||
model = build_model(data_filename)
|
||||
model.extract_after_load(h5)
|
||||
|
||||
# Solve LP relaxation
|
||||
relaxed = model.relax()
|
||||
relaxed.optimize()
|
||||
relaxed.extract_after_lp(h5)
|
||||
|
||||
# Solve MIP
|
||||
model.optimize()
|
||||
model.extract_after_mip(h5)
|
||||
|
||||
# Add lazy constraints to model
|
||||
if (
|
||||
hasattr(model, "fix_violations")
|
||||
and model.fix_violations is not None
|
||||
):
|
||||
model.fix_violations(model, model.violations_, "aot")
|
||||
h5.put_scalar(
|
||||
"mip_constr_violations", json.dumps(model.violations_)
|
||||
)
|
||||
|
||||
# Save MPS file
|
||||
model.write(mps_filename)
|
||||
gzip(mps_filename)
|
||||
|
||||
h5.put_scalar("mip_log", streams[0].getvalue())
|
||||
|
||||
if n_jobs > 1:
|
||||
p_umap(
|
||||
_collect,
|
||||
filenames,
|
||||
num_cpus=n_jobs,
|
||||
desc="collect",
|
||||
smoothing=0,
|
||||
disable=not progress,
|
||||
)
|
||||
else:
|
||||
for filename in filenames:
|
||||
_collect(filename)
|
||||
117
miplearn/collectors/lazy.py
Normal file
117
miplearn/collectors/lazy.py
Normal file
@@ -0,0 +1,117 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from io import StringIO
|
||||
from typing import Callable
|
||||
|
||||
import gurobipy as gp
|
||||
import numpy as np
|
||||
from gurobipy import GRB, LinExpr
|
||||
|
||||
from ..h5 import H5File
|
||||
from ..io import _RedirectOutput
|
||||
|
||||
|
||||
class LazyCollector:
|
||||
def __init__(
|
||||
self,
|
||||
min_constrs: int = 100_000,
|
||||
time_limit: float = 900,
|
||||
) -> None:
|
||||
self.min_constrs = min_constrs
|
||||
self.time_limit = time_limit
|
||||
|
||||
def collect(
|
||||
self, data_filename: str, build_model: Callable, tol: float = 1e-6
|
||||
) -> None:
|
||||
h5_filename = f"{data_filename}.h5"
|
||||
with H5File(h5_filename, "r+") as h5:
|
||||
streams = [StringIO()]
|
||||
lazy = None
|
||||
with _RedirectOutput(streams):
|
||||
slacks = h5.get_array("mip_constr_slacks")
|
||||
assert slacks is not None
|
||||
|
||||
# Check minimum problem size
|
||||
if len(slacks) < self.min_constrs:
|
||||
print("Problem is too small. Skipping.")
|
||||
h5.put_array("mip_constr_lazy", np.zeros(len(slacks)))
|
||||
return
|
||||
|
||||
# Load model
|
||||
print("Loading model...")
|
||||
model = build_model(data_filename)
|
||||
model.params.LazyConstraints = True
|
||||
model.params.timeLimit = self.time_limit
|
||||
gp_constrs = np.array(model.getConstrs())
|
||||
gp_vars = np.array(model.getVars())
|
||||
|
||||
# Load constraints
|
||||
lhs = h5.get_sparse("static_constr_lhs")
|
||||
rhs = h5.get_array("static_constr_rhs")
|
||||
sense = h5.get_array("static_constr_sense")
|
||||
assert lhs is not None
|
||||
assert rhs is not None
|
||||
assert sense is not None
|
||||
lhs_csr = lhs.tocsr()
|
||||
lhs_csc = lhs.tocsc()
|
||||
constr_idx = np.array(range(len(rhs)))
|
||||
lazy = np.zeros(len(rhs))
|
||||
|
||||
# Drop loose constraints
|
||||
selected = (slacks > 0) & ((sense == b"<") | (sense == b">"))
|
||||
loose_constrs = gp_constrs[selected]
|
||||
print(
|
||||
f"Removing {len(loose_constrs):,d} constraints (out of {len(rhs):,d})..."
|
||||
)
|
||||
model.remove(list(loose_constrs))
|
||||
|
||||
# Filter to constraints that were dropped
|
||||
lhs_csr = lhs_csr[selected, :]
|
||||
lhs_csc = lhs_csc[selected, :]
|
||||
rhs = rhs[selected]
|
||||
sense = sense[selected]
|
||||
constr_idx = constr_idx[selected]
|
||||
lazy[selected] = 1
|
||||
|
||||
# Load warm start
|
||||
var_names = h5.get_array("static_var_names")
|
||||
var_values = h5.get_array("mip_var_values")
|
||||
assert var_values is not None
|
||||
assert var_names is not None
|
||||
for (var_idx, var_name) in enumerate(var_names):
|
||||
var = model.getVarByName(var_name.decode())
|
||||
var.start = var_values[var_idx]
|
||||
|
||||
print("Solving MIP with lazy constraints callback...")
|
||||
|
||||
def callback(model: gp.Model, where: int) -> None:
|
||||
assert rhs is not None
|
||||
assert lazy is not None
|
||||
assert sense is not None
|
||||
|
||||
if where == GRB.Callback.MIPSOL:
|
||||
x_val = np.array(model.cbGetSolution(model.getVars()))
|
||||
slack = lhs_csc * x_val - rhs
|
||||
slack[sense == b">"] *= -1
|
||||
is_violated = slack > tol
|
||||
|
||||
for (j, rhs_j) in enumerate(rhs):
|
||||
if is_violated[j]:
|
||||
lazy[constr_idx[j]] = 0
|
||||
expr = LinExpr(
|
||||
lhs_csr[j, :].data, gp_vars[lhs_csr[j, :].indices]
|
||||
)
|
||||
if sense[j] == b"<":
|
||||
model.cbLazy(expr <= rhs_j)
|
||||
elif sense[j] == b">":
|
||||
model.cbLazy(expr >= rhs_j)
|
||||
else:
|
||||
raise RuntimeError(f"Unknown sense: {sense[j]}")
|
||||
|
||||
model.optimize(callback)
|
||||
print(f"Marking {lazy.sum():,.0f} constraints as lazy...")
|
||||
|
||||
h5.put_array("mip_constr_lazy", lazy)
|
||||
h5.put_scalar("mip_constr_lazy_log", streams[0].getvalue())
|
||||
49
miplearn/collectors/priority.py
Normal file
49
miplearn/collectors/priority.py
Normal file
@@ -0,0 +1,49 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import os
|
||||
import subprocess
|
||||
from typing import Callable
|
||||
|
||||
from ..h5 import H5File
|
||||
|
||||
|
||||
class BranchPriorityCollector:
|
||||
def __init__(
|
||||
self,
|
||||
time_limit: float = 900.0,
|
||||
print_interval: int = 1,
|
||||
node_limit: int = 500,
|
||||
) -> None:
|
||||
self.time_limit = time_limit
|
||||
self.print_interval = print_interval
|
||||
self.node_limit = node_limit
|
||||
|
||||
def collect(self, data_filename: str, _: Callable) -> None:
|
||||
basename = data_filename.replace(".pkl.gz", "")
|
||||
env = os.environ.copy()
|
||||
env["JULIA_NUM_THREADS"] = "1"
|
||||
ret = subprocess.run(
|
||||
[
|
||||
"julia",
|
||||
"--project=.",
|
||||
"-e",
|
||||
(
|
||||
f"using CPLEX, JuMP, MIPLearn.BB; "
|
||||
f"BB.solve!("
|
||||
f' optimizer_with_attributes(CPLEX.Optimizer, "CPXPARAM_Threads" => 1),'
|
||||
f' "{basename}",'
|
||||
f" print_interval={self.print_interval},"
|
||||
f" time_limit={self.time_limit:.2f},"
|
||||
f" node_limit={self.node_limit},"
|
||||
f")"
|
||||
),
|
||||
],
|
||||
check=True,
|
||||
capture_output=True,
|
||||
env=env,
|
||||
)
|
||||
h5_filename = f"{basename}.h5"
|
||||
with H5File(h5_filename, "r+") as h5:
|
||||
h5.put_scalar("bb_log", ret.stdout)
|
||||
Reference in New Issue
Block a user