MIPLearn v0.3

This commit is contained in:
2023-06-08 11:25:39 -05:00
parent 6cc253a903
commit 1ea989d48a
172 changed files with 10495 additions and 24812 deletions

View File

@@ -0,0 +1,93 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import logging
from abc import ABC, abstractmethod
from typing import Optional, Dict
import numpy as np
from miplearn.solvers.abstract import AbstractModel
logger = logging.getLogger()
class PrimalComponentAction(ABC):
@abstractmethod
def perform(
self,
model: AbstractModel,
var_names: np.ndarray,
var_values: np.ndarray,
stats: Optional[Dict],
) -> None:
pass
class SetWarmStart(PrimalComponentAction):
def perform(
self,
model: AbstractModel,
var_names: np.ndarray,
var_values: np.ndarray,
stats: Optional[Dict],
) -> None:
logger.info("Setting warm starts...")
model.set_warm_starts(var_names, var_values, stats)
class FixVariables(PrimalComponentAction):
def perform(
self,
model: AbstractModel,
var_names: np.ndarray,
var_values: np.ndarray,
stats: Optional[Dict],
) -> None:
logger.info("Fixing variables...")
assert len(var_values.shape) == 2
assert var_values.shape[0] == 1
var_values = var_values.reshape(-1)
model.fix_variables(var_names, var_values, stats)
if stats is not None:
stats["Heuristic"] = True
class EnforceProximity(PrimalComponentAction):
def __init__(self, tol: float) -> None:
self.tol = tol
def perform(
self,
model: AbstractModel,
var_names: np.ndarray,
var_values: np.ndarray,
stats: Optional[Dict],
) -> None:
assert len(var_values.shape) == 2
assert var_values.shape[0] == 1
var_values = var_values.reshape(-1)
constr_lhs = []
constr_vars = []
constr_rhs = 0.0
for (i, var_name) in enumerate(var_names):
if np.isnan(var_values[i]):
continue
constr_lhs.append(1.0 if var_values[i] < 0.5 else -1.0)
constr_rhs -= var_values[i]
constr_vars.append(var_name)
constr_rhs += len(constr_vars) * self.tol
logger.info(
f"Adding proximity constraint (tol={self.tol}, nz={len(constr_vars)})..."
)
model.add_constrs(
np.array(constr_vars),
np.array([constr_lhs]),
np.array(["<"], dtype="S"),
np.array([constr_rhs]),
)
if stats is not None:
stats["Heuristic"] = True