mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-08 02:18:51 -06:00
MIPLearn v0.3
This commit is contained in:
167
miplearn/components/primal/mem.py
Normal file
167
miplearn/components/primal/mem.py
Normal file
@@ -0,0 +1,167 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import List, Dict, Any, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
|
||||
from . import _extract_bin_var_names_values
|
||||
from .actions import PrimalComponentAction
|
||||
from ...extractors.abstract import FeaturesExtractor
|
||||
from ...solvers.abstract import AbstractModel
|
||||
from ...h5 import H5File
|
||||
|
||||
logger = logging.getLogger()
|
||||
|
||||
|
||||
class SolutionConstructor(ABC):
|
||||
@abstractmethod
|
||||
def construct(self, y_proba: np.ndarray, solutions: np.ndarray) -> np.ndarray:
|
||||
pass
|
||||
|
||||
|
||||
class MemorizingPrimalComponent:
|
||||
"""
|
||||
Component that memorizes all solutions seen during training, then fits a
|
||||
single classifier to predict which of the memorized solutions should be
|
||||
provided to the solver. Optionally combines multiple memorized solutions
|
||||
into a single, partial one.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
clf: Any,
|
||||
extractor: FeaturesExtractor,
|
||||
constructor: SolutionConstructor,
|
||||
action: PrimalComponentAction,
|
||||
) -> None:
|
||||
assert clf is not None
|
||||
self.clf = clf
|
||||
self.extractor = extractor
|
||||
self.constructor = constructor
|
||||
self.solutions_: Optional[np.ndarray] = None
|
||||
self.bin_var_names_: Optional[np.ndarray] = None
|
||||
self.action = action
|
||||
|
||||
def fit(self, train_h5: List[str]) -> None:
|
||||
logger.info("Reading training data...")
|
||||
n_samples = len(train_h5)
|
||||
solutions_ = []
|
||||
self.bin_var_names_ = None
|
||||
x, y, n_features = [], [], None
|
||||
solution_to_idx: Dict[Tuple, int] = {}
|
||||
for h5_filename in train_h5:
|
||||
with H5File(h5_filename, "r") as h5:
|
||||
bin_var_names, bin_var_values, _ = _extract_bin_var_names_values(h5)
|
||||
|
||||
# Store/check variable names
|
||||
if self.bin_var_names_ is None:
|
||||
self.bin_var_names_ = bin_var_names
|
||||
else:
|
||||
assert np.all(bin_var_names == self.bin_var_names_)
|
||||
|
||||
# Store solution
|
||||
sol = tuple(np.where(bin_var_values)[0])
|
||||
if sol not in solution_to_idx:
|
||||
solutions_.append(bin_var_values)
|
||||
solution_to_idx[sol] = len(solution_to_idx)
|
||||
y.append(solution_to_idx[sol])
|
||||
|
||||
# Extract features
|
||||
x_sample = self.extractor.get_instance_features(h5)
|
||||
assert len(x_sample.shape) == 1
|
||||
if n_features is None:
|
||||
n_features = len(x_sample)
|
||||
else:
|
||||
assert len(x_sample) == n_features
|
||||
x.append(x_sample)
|
||||
|
||||
logger.info("Constructing matrices...")
|
||||
x_np = np.vstack(x)
|
||||
y_np = np.array(y)
|
||||
assert len(x_np.shape) == 2
|
||||
assert x_np.shape[0] == n_samples
|
||||
assert x_np.shape[1] == n_features
|
||||
assert y_np.shape == (n_samples,)
|
||||
self.solutions_ = np.array(solutions_)
|
||||
n_classes = len(solution_to_idx)
|
||||
logger.info(
|
||||
f"Dataset has {n_samples:,d} samples, "
|
||||
f"{n_features:,d} features and {n_classes:,d} classes"
|
||||
)
|
||||
|
||||
logger.info("Training classifier...")
|
||||
self.clf.fit(x_np, y_np)
|
||||
|
||||
logger.info("Done fitting.")
|
||||
|
||||
def before_mip(
|
||||
self, test_h5: str, model: AbstractModel, stats: Dict[str, Any]
|
||||
) -> None:
|
||||
assert self.solutions_ is not None
|
||||
assert self.bin_var_names_ is not None
|
||||
|
||||
# Read features
|
||||
with H5File(test_h5, "r") as h5:
|
||||
x_sample = self.extractor.get_instance_features(h5)
|
||||
assert len(x_sample.shape) == 1
|
||||
x_sample = x_sample.reshape(1, -1)
|
||||
|
||||
# Predict optimal solution
|
||||
logger.info("Predicting primal solution...")
|
||||
y_proba = self.clf.predict_proba(x_sample)
|
||||
assert len(y_proba.shape) == 2
|
||||
assert y_proba.shape[0] == 1
|
||||
assert y_proba.shape[1] == len(self.solutions_)
|
||||
|
||||
# Construct warm starts, based on prediction
|
||||
starts = self.constructor.construct(y_proba[0, :], self.solutions_)
|
||||
self.action.perform(model, self.bin_var_names_, starts, stats)
|
||||
|
||||
|
||||
class SelectTopSolutions(SolutionConstructor):
|
||||
"""
|
||||
Warm start construction strategy that selects and returns the top k solutions.
|
||||
"""
|
||||
|
||||
def __init__(self, k: int) -> None:
|
||||
self.k = k
|
||||
|
||||
def construct(self, y_proba: np.ndarray, solutions: np.ndarray) -> np.ndarray:
|
||||
# Check arguments
|
||||
assert len(y_proba.shape) == 1
|
||||
assert len(solutions.shape) == 2
|
||||
assert len(y_proba) == solutions.shape[0]
|
||||
|
||||
# Select top k solutions
|
||||
ind = np.argsort(-y_proba, kind="stable")
|
||||
selected = ind[: min(self.k, len(ind))]
|
||||
return solutions[selected, :]
|
||||
|
||||
|
||||
class MergeTopSolutions(SolutionConstructor):
|
||||
"""
|
||||
Warm start construction strategy that first selects the top k solutions,
|
||||
then merges them into a single solution.
|
||||
|
||||
To merge the solutions, the strategy first computes the mean optimal value of each
|
||||
decision variable, then: (i) sets the variable to zero if the mean is below
|
||||
thresholds[0]; (ii) sets the variable to one if the mean is above thresholds[1];
|
||||
(iii) leaves the variable free otherwise.
|
||||
"""
|
||||
|
||||
def __init__(self, k: int, thresholds: List[float]):
|
||||
assert len(thresholds) == 2
|
||||
self.k = k
|
||||
self.thresholds = thresholds
|
||||
|
||||
def construct(self, y_proba: np.ndarray, solutions: np.ndarray) -> np.ndarray:
|
||||
filtered = SelectTopSolutions(self.k).construct(y_proba, solutions)
|
||||
mean = filtered.mean(axis=0)
|
||||
start = np.full((1, solutions.shape[1]), float("nan"))
|
||||
start[0, mean <= self.thresholds[0]] = 0
|
||||
start[0, mean >= self.thresholds[1]] = 1
|
||||
return start
|
||||
Reference in New Issue
Block a user