mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-08 02:18:51 -06:00
MIPLearn v0.3
This commit is contained in:
146
miplearn/h5.py
Normal file
146
miplearn/h5.py
Normal file
@@ -0,0 +1,146 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from types import TracebackType
|
||||
from typing import Optional, Any, Union, List, Type, Literal
|
||||
|
||||
import h5py
|
||||
import numpy as np
|
||||
from scipy.sparse import coo_matrix
|
||||
|
||||
Bytes = Union[bytes, bytearray]
|
||||
|
||||
Scalar = Union[None, bool, str, int, float]
|
||||
|
||||
Vector = Union[
|
||||
None,
|
||||
List[bool],
|
||||
List[str],
|
||||
List[int],
|
||||
List[float],
|
||||
List[Optional[str]],
|
||||
np.ndarray,
|
||||
]
|
||||
|
||||
VectorList = Union[
|
||||
List[List[bool]],
|
||||
List[List[str]],
|
||||
List[List[int]],
|
||||
List[List[float]],
|
||||
List[Optional[List[bool]]],
|
||||
List[Optional[List[str]]],
|
||||
List[Optional[List[int]]],
|
||||
List[Optional[List[float]]],
|
||||
]
|
||||
|
||||
|
||||
class H5File:
|
||||
def __init__(
|
||||
self,
|
||||
filename: str,
|
||||
mode: str = "r+",
|
||||
) -> None:
|
||||
self.file = h5py.File(filename, mode, libver="latest")
|
||||
|
||||
def get_scalar(self, key: str) -> Optional[Any]:
|
||||
if key not in self.file:
|
||||
return None
|
||||
ds = self.file[key]
|
||||
assert (
|
||||
len(ds.shape) == 0
|
||||
), f"0-dimensional array expected; found shape {ds.shape}"
|
||||
if h5py.check_string_dtype(ds.dtype):
|
||||
return ds.asstr()[()]
|
||||
else:
|
||||
return ds[()].tolist()
|
||||
|
||||
def put_scalar(self, key: str, value: Any) -> None:
|
||||
if value is None:
|
||||
return
|
||||
self._assert_is_scalar(value)
|
||||
if key in self.file:
|
||||
del self.file[key]
|
||||
self.file.create_dataset(key, data=value)
|
||||
|
||||
def put_array(self, key: str, value: Optional[np.ndarray]) -> None:
|
||||
if value is None:
|
||||
return
|
||||
self._assert_is_array(value)
|
||||
if value.dtype.kind == "f":
|
||||
value = value.astype("float32")
|
||||
if key in self.file:
|
||||
del self.file[key]
|
||||
return self.file.create_dataset(key, data=value, compression="gzip")
|
||||
|
||||
def get_array(self, key: str) -> Optional[np.ndarray]:
|
||||
if key not in self.file:
|
||||
return None
|
||||
return self.file[key][:]
|
||||
|
||||
def put_sparse(self, key: str, value: coo_matrix) -> None:
|
||||
if value is None:
|
||||
return
|
||||
self._assert_is_sparse(value)
|
||||
self.put_array(f"{key}_row", value.row)
|
||||
self.put_array(f"{key}_col", value.col)
|
||||
self.put_array(f"{key}_data", value.data)
|
||||
|
||||
def get_sparse(self, key: str) -> Optional[coo_matrix]:
|
||||
row = self.get_array(f"{key}_row")
|
||||
if row is None:
|
||||
return None
|
||||
col = self.get_array(f"{key}_col")
|
||||
data = self.get_array(f"{key}_data")
|
||||
assert col is not None
|
||||
assert data is not None
|
||||
return coo_matrix((data, (row, col)))
|
||||
|
||||
def get_bytes(self, key: str) -> Optional[Bytes]:
|
||||
if key not in self.file:
|
||||
return None
|
||||
ds = self.file[key]
|
||||
assert (
|
||||
len(ds.shape) == 1
|
||||
), f"1-dimensional array expected; found shape {ds.shape}"
|
||||
return ds[()].tobytes()
|
||||
|
||||
def put_bytes(self, key: str, value: Bytes) -> None:
|
||||
assert isinstance(
|
||||
value, (bytes, bytearray)
|
||||
), f"bytes expected; found: {value.__class__}" # type: ignore
|
||||
self.put_array(key, np.frombuffer(value, dtype="uint8"))
|
||||
|
||||
def close(self):
|
||||
self.file.close()
|
||||
|
||||
def __enter__(self) -> "H5File":
|
||||
return self
|
||||
|
||||
def __exit__(
|
||||
self,
|
||||
exc_type: Optional[Type[BaseException]],
|
||||
exc_val: Optional[BaseException],
|
||||
exc_tb: Optional[TracebackType],
|
||||
) -> Literal[False]:
|
||||
self.file.close()
|
||||
return False
|
||||
|
||||
def _assert_is_scalar(self, value: Any) -> None:
|
||||
if value is None:
|
||||
return
|
||||
if isinstance(value, (str, bool, int, float, bytes, np.bytes_)):
|
||||
return
|
||||
assert False, f"scalar expected; found instead: {value} ({value.__class__})"
|
||||
|
||||
def _assert_is_array(self, value: np.ndarray) -> None:
|
||||
assert isinstance(
|
||||
value, np.ndarray
|
||||
), f"np.ndarray expected; found instead: {value.__class__}"
|
||||
assert value.dtype.kind in "biufS", f"Unsupported dtype: {value.dtype}"
|
||||
|
||||
def _assert_is_sparse(self, value: Any) -> None:
|
||||
assert isinstance(
|
||||
value, coo_matrix
|
||||
), f"coo_matrix expected; found: {value.__class__}"
|
||||
self._assert_is_array(value.data)
|
||||
Reference in New Issue
Block a user