mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-09 02:48:52 -06:00
MIPLearn v0.3
This commit is contained in:
146
miplearn/problems/binpack.py
Normal file
146
miplearn/problems/binpack.py
Normal file
@@ -0,0 +1,146 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import gurobipy as gp
|
||||
import numpy as np
|
||||
from gurobipy import GRB, quicksum
|
||||
from scipy.stats import uniform, randint
|
||||
from scipy.stats.distributions import rv_frozen
|
||||
|
||||
from miplearn.io import read_pkl_gz
|
||||
from miplearn.solvers.gurobi import GurobiModel
|
||||
|
||||
|
||||
@dataclass
|
||||
class BinPackData:
|
||||
"""Data for the bin packing problem.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
sizes
|
||||
Sizes of the items
|
||||
capacity
|
||||
Capacity of the bin
|
||||
"""
|
||||
|
||||
sizes: np.ndarray
|
||||
capacity: int
|
||||
|
||||
|
||||
class BinPackGenerator:
|
||||
"""Random instance generator for the bin packing problem.
|
||||
|
||||
If `fix_items=False`, the class samples the user-provided probability distributions
|
||||
n, sizes and capacity to decide, respectively, the number of items, the sizes of
|
||||
the items and capacity of the bin. All values are sampled independently.
|
||||
|
||||
If `fix_items=True`, the class creates a reference instance, using the method
|
||||
previously described, then generates additional instances by perturbing its item
|
||||
sizes and bin capacity. More specifically, the sizes of the items are set to `s_i
|
||||
* gamma_i` where `s_i` is the size of the i-th item in the reference instance and
|
||||
`gamma_i` is sampled from `sizes_jitter`. Similarly, the bin capacity is set to `B *
|
||||
beta`, where `B` is the reference bin capacity and `beta` is sampled from
|
||||
`capacity_jitter`. The number of items remains the same across all generated
|
||||
instances.
|
||||
|
||||
Args
|
||||
----
|
||||
n
|
||||
Probability distribution for the number of items.
|
||||
sizes
|
||||
Probability distribution for the item sizes.
|
||||
capacity
|
||||
Probability distribution for the bin capacity.
|
||||
sizes_jitter
|
||||
Probability distribution for the item size randomization.
|
||||
capacity_jitter
|
||||
Probability distribution for the bin capacity.
|
||||
fix_items
|
||||
If `True`, generates a reference instance, then applies some perturbation to it.
|
||||
If `False`, generates completely different instances.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n: rv_frozen,
|
||||
sizes: rv_frozen,
|
||||
capacity: rv_frozen,
|
||||
sizes_jitter: rv_frozen,
|
||||
capacity_jitter: rv_frozen,
|
||||
fix_items: bool,
|
||||
) -> None:
|
||||
self.n = n
|
||||
self.sizes = sizes
|
||||
self.capacity = capacity
|
||||
self.sizes_jitter = sizes_jitter
|
||||
self.capacity_jitter = capacity_jitter
|
||||
self.fix_items = fix_items
|
||||
self.ref_data: Optional[BinPackData] = None
|
||||
|
||||
def generate(self, n_samples: int) -> List[BinPackData]:
|
||||
"""Generates random instances.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_samples
|
||||
Number of samples to generate.
|
||||
"""
|
||||
|
||||
def _sample() -> BinPackData:
|
||||
if self.ref_data is None:
|
||||
n = self.n.rvs()
|
||||
sizes = self.sizes.rvs(n)
|
||||
capacity = self.capacity.rvs()
|
||||
if self.fix_items:
|
||||
self.ref_data = BinPackData(sizes, capacity)
|
||||
else:
|
||||
n = self.ref_data.sizes.shape[0]
|
||||
sizes = self.ref_data.sizes
|
||||
capacity = self.ref_data.capacity
|
||||
|
||||
sizes = sizes * self.sizes_jitter.rvs(n)
|
||||
capacity = capacity * self.capacity_jitter.rvs()
|
||||
return BinPackData(sizes.round(2), capacity.round(2))
|
||||
|
||||
return [_sample() for n in range(n_samples)]
|
||||
|
||||
|
||||
def build_binpack_model(data: Union[str, BinPackData]) -> GurobiModel:
|
||||
"""Converts bin packing problem data into a concrete Gurobipy model."""
|
||||
if isinstance(data, str):
|
||||
data = read_pkl_gz(data)
|
||||
assert isinstance(data, BinPackData)
|
||||
|
||||
model = gp.Model()
|
||||
n = data.sizes.shape[0]
|
||||
|
||||
# Var: Use bin
|
||||
y = model.addVars(n, name="y", vtype=GRB.BINARY)
|
||||
|
||||
# Var: Assign item to bin
|
||||
x = model.addVars(n, n, name="x", vtype=GRB.BINARY)
|
||||
|
||||
# Obj: Minimize number of bins
|
||||
model.setObjective(quicksum(y[i] for i in range(n)))
|
||||
|
||||
# Eq: Enforce bin capacity
|
||||
model.addConstrs(
|
||||
(
|
||||
quicksum(data.sizes[i] * x[i, j] for i in range(n)) <= data.capacity * y[j]
|
||||
for j in range(n)
|
||||
),
|
||||
name="eq_capacity",
|
||||
)
|
||||
|
||||
# Eq: Must assign all items to bins
|
||||
model.addConstrs(
|
||||
(quicksum(x[i, j] for j in range(n)) == 1 for i in range(n)),
|
||||
name="eq_assign",
|
||||
)
|
||||
|
||||
model.update()
|
||||
return GurobiModel(model)
|
||||
Reference in New Issue
Block a user