mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-09 02:48:52 -06:00
MIPLearn v0.3
This commit is contained in:
120
miplearn/problems/setcover.py
Normal file
120
miplearn/problems/setcover.py
Normal file
@@ -0,0 +1,120 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Union
|
||||
|
||||
import gurobipy as gp
|
||||
import numpy as np
|
||||
import pyomo.environ as pe
|
||||
from gurobipy.gurobipy import GRB
|
||||
from scipy.stats import uniform, randint
|
||||
from scipy.stats.distributions import rv_frozen
|
||||
|
||||
from miplearn.io import read_pkl_gz
|
||||
from miplearn.solvers.gurobi import GurobiModel
|
||||
from miplearn.solvers.pyomo import PyomoModel
|
||||
|
||||
|
||||
@dataclass
|
||||
class SetCoverData:
|
||||
costs: np.ndarray
|
||||
incidence_matrix: np.ndarray
|
||||
|
||||
|
||||
class SetCoverGenerator:
|
||||
def __init__(
|
||||
self,
|
||||
n_elements: rv_frozen = randint(low=50, high=51),
|
||||
n_sets: rv_frozen = randint(low=100, high=101),
|
||||
costs: rv_frozen = uniform(loc=0.0, scale=100.0),
|
||||
costs_jitter: rv_frozen = uniform(loc=-5.0, scale=10.0),
|
||||
K: rv_frozen = uniform(loc=25.0, scale=0.0),
|
||||
density: rv_frozen = uniform(loc=0.02, scale=0.00),
|
||||
fix_sets: bool = True,
|
||||
):
|
||||
self.n_elements = n_elements
|
||||
self.n_sets = n_sets
|
||||
self.costs = costs
|
||||
self.costs_jitter = costs_jitter
|
||||
self.density = density
|
||||
self.K = K
|
||||
self.fix_sets = fix_sets
|
||||
self.fixed_costs = None
|
||||
self.fixed_matrix = None
|
||||
|
||||
def generate(self, n_samples: int) -> List[SetCoverData]:
|
||||
def _sample() -> SetCoverData:
|
||||
if self.fixed_matrix is None:
|
||||
n_sets = self.n_sets.rvs()
|
||||
n_elements = self.n_elements.rvs()
|
||||
density = self.density.rvs()
|
||||
|
||||
incidence_matrix = np.random.rand(n_elements, n_sets) < density
|
||||
incidence_matrix = incidence_matrix.astype(int)
|
||||
|
||||
# Ensure each element belongs to at least one set
|
||||
for j in range(n_elements):
|
||||
if incidence_matrix[j, :].sum() == 0:
|
||||
incidence_matrix[j, randint(low=0, high=n_sets).rvs()] = 1
|
||||
|
||||
# Ensure each set contains at least one element
|
||||
for i in range(n_sets):
|
||||
if incidence_matrix[:, i].sum() == 0:
|
||||
incidence_matrix[randint(low=0, high=n_elements).rvs(), i] = 1
|
||||
|
||||
costs = self.costs.rvs(n_sets) + self.K.rvs() * incidence_matrix.sum(
|
||||
axis=0
|
||||
)
|
||||
if self.fix_sets:
|
||||
self.fixed_matrix = incidence_matrix
|
||||
self.fixed_costs = costs
|
||||
else:
|
||||
incidence_matrix = self.fixed_matrix
|
||||
(_, n_sets) = incidence_matrix.shape
|
||||
costs = self.fixed_costs * self.costs_jitter.rvs(n_sets)
|
||||
return SetCoverData(
|
||||
costs=costs.round(2),
|
||||
incidence_matrix=incidence_matrix,
|
||||
)
|
||||
|
||||
return [_sample() for _ in range(n_samples)]
|
||||
|
||||
|
||||
def build_setcover_model_gurobipy(data: Union[str, SetCoverData]) -> GurobiModel:
|
||||
data = _read_setcover_data(data)
|
||||
(n_elements, n_sets) = data.incidence_matrix.shape
|
||||
model = gp.Model()
|
||||
x = model.addMVar(n_sets, vtype=GRB.BINARY, name="x")
|
||||
model.addConstr(data.incidence_matrix @ x >= np.ones(n_elements), name="eqs")
|
||||
model.setObjective(data.costs @ x)
|
||||
model.update()
|
||||
return GurobiModel(model)
|
||||
|
||||
|
||||
def build_setcover_model_pyomo(
|
||||
data: Union[str, SetCoverData],
|
||||
solver="gurobi_persistent",
|
||||
) -> PyomoModel:
|
||||
data = _read_setcover_data(data)
|
||||
(n_elements, n_sets) = data.incidence_matrix.shape
|
||||
model = pe.ConcreteModel()
|
||||
model.sets = pe.Set(initialize=range(n_sets))
|
||||
model.x = pe.Var(model.sets, domain=pe.Boolean, name="x")
|
||||
model.eqs = pe.Constraint(pe.Any)
|
||||
for i in range(n_elements):
|
||||
model.eqs[i] = (
|
||||
sum(data.incidence_matrix[i, j] * model.x[j] for j in range(n_sets)) >= 1
|
||||
)
|
||||
model.obj = pe.Objective(
|
||||
expr=sum(data.costs[j] * model.x[j] for j in range(n_sets))
|
||||
)
|
||||
return PyomoModel(model, solver)
|
||||
|
||||
|
||||
def _read_setcover_data(data: Union[str, SetCoverData]) -> SetCoverData:
|
||||
if isinstance(data, str):
|
||||
data = read_pkl_gz(data)
|
||||
assert isinstance(data, SetCoverData)
|
||||
return data
|
||||
Reference in New Issue
Block a user