MIPLearn v0.3

This commit is contained in:
2023-06-08 11:25:39 -05:00
parent 6cc253a903
commit 1ea989d48a
172 changed files with 10495 additions and 24812 deletions

View File

@@ -1,22 +1,23 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from dataclasses import dataclass
from typing import List, Tuple, Any, Optional, Dict
from typing import List, Tuple, Optional, Any, Union
import gurobipy as gp
import networkx as nx
import numpy as np
import pyomo.environ as pe
from overrides import overrides
from gurobipy import quicksum, GRB, tuplelist
from scipy.spatial.distance import pdist, squareform
from scipy.stats import uniform, randint
from scipy.stats.distributions import rv_frozen
import logging
from miplearn.instance.base import Instance
from miplearn.solvers.learning import InternalSolver
from miplearn.solvers.pyomo.base import BasePyomoSolver
from miplearn.types import ConstraintName
from miplearn.io import read_pkl_gz
from miplearn.solvers.gurobi import GurobiModel
logger = logging.getLogger(__name__)
@dataclass
@@ -25,80 +26,6 @@ class TravelingSalesmanData:
distances: np.ndarray
class TravelingSalesmanInstance(Instance):
"""An instance ot the Traveling Salesman Problem.
Given a list of cities and the distance between each pair of cities, the problem
asks for the shortest route starting at the first city, visiting each other city
exactly once, then returning to the first city. This problem is a generalization
of the Hamiltonian path problem, one of Karp's 21 NP-complete problems.
"""
def __init__(self, n_cities: int, distances: np.ndarray) -> None:
super().__init__()
assert isinstance(distances, np.ndarray)
assert distances.shape == (n_cities, n_cities)
self.n_cities = n_cities
self.distances = distances
self.edges = [
(i, j) for i in range(self.n_cities) for j in range(i + 1, self.n_cities)
]
@overrides
def to_model(self) -> pe.ConcreteModel:
model = pe.ConcreteModel()
model.x = pe.Var(self.edges, domain=pe.Binary)
model.obj = pe.Objective(
expr=sum(model.x[i, j] * self.distances[i, j] for (i, j) in self.edges),
sense=pe.minimize,
)
model.eq_degree = pe.ConstraintList()
model.eq_subtour = pe.ConstraintList()
for i in range(self.n_cities):
model.eq_degree.add(
sum(
model.x[min(i, j), max(i, j)]
for j in range(self.n_cities)
if i != j
)
== 2
)
return model
@overrides
def find_violated_lazy_constraints(
self,
solver: InternalSolver,
model: Any,
) -> Dict[ConstraintName, List]:
selected_edges = [e for e in self.edges if model.x[e].value > 0.5]
graph = nx.Graph()
graph.add_edges_from(selected_edges)
violations = {}
for c in list(nx.connected_components(graph)):
if len(c) < self.n_cities:
cname = ("st[" + ",".join(map(str, c)) + "]").encode()
violations[cname] = list(c)
return violations
@overrides
def enforce_lazy_constraint(
self,
solver: InternalSolver,
model: Any,
component: List,
) -> None:
assert isinstance(solver, BasePyomoSolver)
cut_edges = [
e
for e in self.edges
if (e[0] in component and e[1] not in component)
or (e[0] not in component and e[1] in component)
]
constr = model.eq_subtour.add(expr=sum(model.x[e] for e in cut_edges) >= 2)
solver.add_constraint(constr)
class TravelingSalesmanGenerator:
"""Random generator for the Traveling Salesman Problem."""
@@ -118,7 +45,7 @@ class TravelingSalesmanGenerator:
distributions `n`, `x` and `y`. For each (unordered) pair of cities (i,j),
the distance d[i,j] between them is set to:
d[i,j] = gamma[i,j] \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
d[i,j] = gamma[i,j] \\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
where gamma is sampled from the provided probability distribution `gamma`.
@@ -183,3 +110,68 @@ class TravelingSalesmanGenerator:
n = self.n.rvs()
cities = np.array([(self.x.rvs(), self.y.rvs()) for _ in range(n)])
return n, cities
def build_tsp_model(data: Union[str, TravelingSalesmanData]) -> GurobiModel:
if isinstance(data, str):
data = read_pkl_gz(data)
assert isinstance(data, TravelingSalesmanData)
edges = tuplelist(
(i, j) for i in range(data.n_cities) for j in range(i + 1, data.n_cities)
)
model = gp.Model()
# Decision variables
x = model.addVars(edges, vtype=GRB.BINARY, name="x")
model._x = x
model._edges = edges
model._n_cities = data.n_cities
# Objective function
model.setObjective(quicksum(x[(i, j)] * data.distances[i, j] for (i, j) in edges))
# Eq: Must choose two edges adjacent to each node
model.addConstrs(
(
quicksum(x[min(i, j), max(i, j)] for j in range(data.n_cities) if i != j)
== 2
for i in range(data.n_cities)
),
name="eq_degree",
)
def find_violations(model: GurobiModel) -> List[Any]:
violations = []
x = model.inner.cbGetSolution(model.inner._x)
selected_edges = [e for e in model.inner._edges if x[e] > 0.5]
graph = nx.Graph()
graph.add_edges_from(selected_edges)
for component in list(nx.connected_components(graph)):
if len(component) < model.inner._n_cities:
cut_edges = [
e
for e in model.inner._edges
if (e[0] in component and e[1] not in component)
or (e[0] not in component and e[1] in component)
]
violations.append(cut_edges)
return violations
def fix_violations(model: GurobiModel, violations: List[Any], where: str) -> None:
for violation in violations:
constr = quicksum(model.inner._x[e[0], e[1]] for e in violation) >= 2
if where == "cb":
model.inner.cbLazy(constr)
else:
model.inner.addConstr(constr)
logger.info(f"tsp: added {len(violations)} subtour elimination constraints")
model.update()
return GurobiModel(
model,
find_violations=find_violations,
fix_violations=fix_violations,
)