mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-11 20:08:52 -06:00
MIPLearn v0.3
This commit is contained in:
51
tests/components/primal/test_indep.py
Normal file
51
tests/components/primal/test_indep.py
Normal file
@@ -0,0 +1,51 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
from typing import List, Dict, Any
|
||||
from unittest.mock import Mock, call
|
||||
|
||||
from sklearn.dummy import DummyClassifier
|
||||
|
||||
from miplearn.components.primal.actions import SetWarmStart
|
||||
from miplearn.components.primal.indep import IndependentVarsPrimalComponent
|
||||
from miplearn.extractors.fields import H5FieldsExtractor
|
||||
|
||||
|
||||
def test_indep(multiknapsack_h5: List[str]) -> None:
|
||||
# Create and fit component
|
||||
clone_fn = Mock(return_value=Mock(wraps=DummyClassifier()))
|
||||
comp = IndependentVarsPrimalComponent(
|
||||
base_clf="dummy",
|
||||
extractor=H5FieldsExtractor(var_fields=["lp_var_values"]),
|
||||
clone_fn=clone_fn,
|
||||
action=SetWarmStart(),
|
||||
)
|
||||
comp.fit(multiknapsack_h5)
|
||||
|
||||
# Should call clone 100 times and store the 100 classifiers
|
||||
clone_fn.assert_has_calls([call("dummy") for _ in range(100)])
|
||||
assert len(comp.clf_) == 100
|
||||
|
||||
for v in [b"x[0]", b"x[1]"]:
|
||||
# Should pass correct data to fit
|
||||
comp.clf_[v].fit.assert_called()
|
||||
x, y = comp.clf_[v].fit.call_args.args
|
||||
assert x.shape == (3, 1)
|
||||
assert y.shape == (3,)
|
||||
|
||||
# Call before-mip
|
||||
stats: Dict[str, Any] = {}
|
||||
model = Mock()
|
||||
comp.before_mip(multiknapsack_h5[0], model, stats)
|
||||
|
||||
# Should call predict with correct args
|
||||
for v in [b"x[0]", b"x[1]"]:
|
||||
comp.clf_[v].predict.assert_called()
|
||||
(x_test,) = comp.clf_[v].predict.call_args.args
|
||||
assert x_test.shape == (1, 1)
|
||||
|
||||
# Should set warm starts
|
||||
model.set_warm_starts.assert_called()
|
||||
names, starts, _ = model.set_warm_starts.call_args.args
|
||||
assert len(names) == 100
|
||||
assert starts.shape == (1, 100)
|
||||
Reference in New Issue
Block a user