MIPLearn v0.3

This commit is contained in:
2023-06-08 11:25:39 -05:00
parent 6cc253a903
commit 1ea989d48a
172 changed files with 10495 additions and 24812 deletions

View File

@@ -1,3 +1,3 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.

View File

@@ -0,0 +1,58 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import numpy as np
from scipy.stats import uniform, randint
from miplearn.problems.binpack import build_binpack_model, BinPackData, BinPackGenerator
def test_binpack_generator() -> None:
np.random.seed(42)
gen = BinPackGenerator(
n=randint(low=10, high=11),
sizes=uniform(loc=0, scale=10),
capacity=uniform(loc=100, scale=0),
sizes_jitter=uniform(loc=0.9, scale=0.2),
capacity_jitter=uniform(loc=0.9, scale=0.2),
fix_items=True,
)
data = gen.generate(2)
assert data[0].sizes.tolist() == [
3.39,
10.4,
7.81,
5.64,
1.46,
1.46,
0.56,
8.7,
5.93,
6.79,
]
assert data[0].capacity == 102.24
assert data[1].sizes.tolist() == [
3.48,
9.11,
7.12,
5.93,
1.65,
1.47,
0.58,
8.82,
5.47,
7.23,
]
assert data[1].capacity == 93.41
def test_binpack() -> None:
model = build_binpack_model(
BinPackData(
sizes=np.array([4, 8, 1, 4, 2, 1]),
capacity=10,
)
)
model.optimize()
assert model.inner.objVal == 2.0

View File

@@ -1,39 +0,0 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import numpy as np
from scipy.stats import uniform, randint
from miplearn import LearningSolver
from miplearn.problems.knapsack import MultiKnapsackGenerator, MultiKnapsackInstance
def test_knapsack_generator() -> None:
gen = MultiKnapsackGenerator(
n=randint(low=100, high=101),
m=randint(low=30, high=31),
w=randint(low=0, high=1000),
K=randint(low=500, high=501),
u=uniform(loc=1.0, scale=1.0),
alpha=uniform(loc=0.50, scale=0.0),
)
data = gen.generate(100)
w_sum = sum(d.weights for d in data) / len(data)
b_sum = sum(d.capacities for d in data) / len(data)
assert round(float(np.mean(w_sum)), -1) == 500.0
assert round(float(np.mean(b_sum)), -3) == 25000.0
def test_knapsack() -> None:
data = MultiKnapsackGenerator(
n=randint(low=5, high=6),
m=randint(low=5, high=6),
).generate(1)
instance = MultiKnapsackInstance(
prices=data[0].prices,
capacities=data[0].capacities,
weights=data[0].weights,
)
solver = LearningSolver()
solver._solve(instance)

View File

@@ -0,0 +1,61 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import numpy as np
from scipy.stats import uniform, randint
from miplearn.problems.multiknapsack import (
MultiKnapsackGenerator,
MultiKnapsackData,
build_multiknapsack_model,
)
def test_knapsack_generator() -> None:
np.random.seed(42)
gen = MultiKnapsackGenerator(
n=randint(low=5, high=6),
m=randint(low=3, high=4),
w=randint(low=0, high=1000),
K=randint(low=500, high=501),
u=uniform(loc=0.0, scale=1.0),
alpha=uniform(loc=0.25, scale=0.0),
fix_w=True,
w_jitter=uniform(loc=0.9, scale=0.2),
p_jitter=uniform(loc=0.9, scale=0.2),
round=True,
)
data = gen.generate(2)
assert data[0].prices.tolist() == [433.0, 477.0, 802.0, 494.0, 458.0]
assert data[0].capacities.tolist() == [458.0, 357.0, 392.0]
assert data[0].weights.tolist() == [
[111.0, 392.0, 945.0, 276.0, 108.0],
[64.0, 633.0, 20.0, 602.0, 110.0],
[510.0, 203.0, 303.0, 469.0, 85.0],
]
assert data[1].prices.tolist() == [344.0, 527.0, 658.0, 519.0, 460.0]
assert data[1].capacities.tolist() == [449.0, 377.0, 380.0]
assert data[1].weights.tolist() == [
[92.0, 473.0, 871.0, 264.0, 96.0],
[67.0, 664.0, 21.0, 628.0, 129.0],
[436.0, 209.0, 309.0, 481.0, 86.0],
]
def test_knapsack_model() -> None:
data = MultiKnapsackData(
prices=np.array([344.0, 527.0, 658.0, 519.0, 460.0]),
capacities=np.array([449.0, 377.0, 380.0]),
weights=np.array(
[
[92.0, 473.0, 871.0, 264.0, 96.0],
[67.0, 664.0, 21.0, 628.0, 129.0],
[436.0, 209.0, 309.0, 481.0, 86.0],
]
),
)
model = build_multiknapsack_model(data)
model.optimize()
assert model.inner.objVal == -460.0

View File

@@ -0,0 +1,53 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import numpy as np
from scipy.stats import uniform, randint
from miplearn.problems.pmedian import PMedianGenerator, build_pmedian_model
def test_pmedian() -> None:
np.random.seed(42)
gen = PMedianGenerator(
x=uniform(loc=0.0, scale=100.0),
y=uniform(loc=0.0, scale=100.0),
n=randint(low=5, high=6),
p=randint(low=2, high=3),
demands=uniform(loc=0, scale=20),
capacities=uniform(loc=0, scale=100),
distances_jitter=uniform(loc=0.95, scale=0.1),
demands_jitter=uniform(loc=0.95, scale=0.1),
capacities_jitter=uniform(loc=0.95, scale=0.1),
fixed=True,
)
data = gen.generate(2)
assert data[0].p == 2
assert data[0].demands.tolist() == [0.41, 19.4, 16.65, 4.25, 3.64]
assert data[0].capacities.tolist() == [18.34, 30.42, 52.48, 43.19, 29.12]
assert data[0].distances.tolist() == [
[0.0, 50.17, 82.42, 32.76, 33.2],
[50.17, 0.0, 72.64, 72.51, 17.06],
[82.42, 72.64, 0.0, 71.69, 70.92],
[32.76, 72.51, 71.69, 0.0, 56.56],
[33.2, 17.06, 70.92, 56.56, 0.0],
]
assert data[1].p == 2
assert data[1].demands.tolist() == [0.42, 19.03, 16.68, 4.27, 3.53]
assert data[1].capacities.tolist() == [19.2, 31.26, 54.79, 44.9, 29.41]
assert data[1].distances.tolist() == [
[0.0, 51.6, 83.31, 33.77, 31.95],
[51.6, 0.0, 70.25, 71.09, 17.05],
[83.31, 70.25, 0.0, 68.81, 67.62],
[33.77, 71.09, 68.81, 0.0, 58.88],
[31.95, 17.05, 67.62, 58.88, 0.0],
]
model = build_pmedian_model(data[0])
assert model.inner.numVars == 30
assert model.inner.numConstrs == 11
model.optimize()
assert round(model.inner.objVal) == 107

View File

@@ -0,0 +1,91 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from tempfile import NamedTemporaryFile
import numpy as np
from scipy.stats import randint, uniform
from miplearn.h5 import H5File
from miplearn.problems.setcover import (
SetCoverData,
build_setcover_model_gurobipy,
SetCoverGenerator,
build_setcover_model_pyomo,
)
def test_set_cover_generator() -> None:
np.random.seed(42)
gen = SetCoverGenerator(
n_elements=randint(low=3, high=4),
n_sets=randint(low=5, high=6),
costs=uniform(loc=0.0, scale=100.0),
costs_jitter=uniform(loc=0.95, scale=0.10),
density=uniform(loc=0.5, scale=0),
K=uniform(loc=25, scale=0),
fix_sets=False,
)
data = gen.generate(2)
assert data[0].costs.round(1).tolist() == [136.8, 86.2, 25.7, 27.3, 102.5]
assert data[0].incidence_matrix.tolist() == [
[1, 0, 1, 0, 1],
[1, 1, 0, 0, 0],
[1, 0, 0, 1, 1],
]
assert data[1].costs.round(1).tolist() == [63.5, 76.6, 48.1, 74.1, 93.3]
assert data[1].incidence_matrix.tolist() == [
[1, 1, 0, 1, 1],
[0, 1, 0, 1, 0],
[0, 1, 1, 0, 0],
]
def test_set_cover_generator_with_fixed_sets() -> None:
np.random.seed(42)
gen = SetCoverGenerator(
n_elements=randint(low=3, high=4),
n_sets=randint(low=5, high=6),
costs=uniform(loc=0.0, scale=100.0),
costs_jitter=uniform(loc=0.95, scale=0.10),
density=uniform(loc=0.5, scale=0.00),
fix_sets=True,
)
data = gen.generate(3)
assert data[0].costs.tolist() == [136.75, 86.17, 25.71, 27.31, 102.48]
assert data[1].costs.tolist() == [135.38, 82.26, 26.92, 26.58, 98.28]
assert data[2].costs.tolist() == [138.37, 85.15, 26.95, 27.22, 106.17]
print(data[0].incidence_matrix)
for i in range(3):
assert data[i].incidence_matrix.tolist() == [
[1, 0, 1, 0, 1],
[1, 1, 0, 0, 0],
[1, 0, 0, 1, 1],
]
def test_set_cover() -> None:
data = SetCoverData(
costs=np.array([5, 10, 12, 6, 8]),
incidence_matrix=np.array(
[
[1, 0, 0, 1, 0],
[1, 1, 0, 0, 0],
[0, 0, 1, 1, 1],
],
),
)
for model in [
build_setcover_model_pyomo(data),
build_setcover_model_gurobipy(data),
]:
with NamedTemporaryFile() as tempfile:
with H5File(tempfile.name) as h5:
model.optimize()
model.extract_after_mip(h5)
assert h5.get_scalar("mip_obj_value") == 11.0

View File

@@ -0,0 +1,26 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import numpy as np
from miplearn.problems.setpack import (
SetPackData,
build_setpack_model,
)
def test_setpack() -> None:
data = SetPackData(
costs=np.array([5, 10, 12, 6, 8]),
incidence_matrix=np.array(
[
[1, 0, 0, 1, 0],
[1, 1, 0, 0, 0],
[0, 0, 1, 1, 1],
],
),
)
model = build_setpack_model(data)
model.optimize()
assert model.inner.objval == -22.0

View File

@@ -1,53 +1,30 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from tempfile import NamedTemporaryFile
import networkx as nx
import numpy as np
from scipy.stats import uniform, randint
from miplearn.problems.stab import MaxWeightStableSetInstance
from miplearn.solvers.learning import LearningSolver
from miplearn.h5 import H5File
from miplearn.problems.stab import (
MaxWeightStableSetData,
build_stab_model_pyomo,
build_stab_model_gurobipy,
)
def test_stab() -> None:
graph = nx.cycle_graph(5)
weights = np.array([1.0, 1.0, 1.0, 1.0, 1.0])
instance = MaxWeightStableSetInstance(graph, weights)
solver = LearningSolver()
stats = solver._solve(instance)
assert stats["mip_lower_bound"] == 2.0
def test_stab_generator_fixed_graph() -> None:
np.random.seed(42)
from miplearn.problems.stab import MaxWeightStableSetGenerator
gen = MaxWeightStableSetGenerator(
w=uniform(loc=50.0, scale=10.0),
n=randint(low=10, high=11),
p=uniform(loc=0.05, scale=0.0),
fix_graph=True,
data = MaxWeightStableSetData(
graph=nx.cycle_graph(5),
weights=np.array([1.0, 1.0, 1.0, 1.0, 1.0]),
)
data = gen.generate(1_000)
weights = np.array([d.weights for d in data])
weights_avg_actual = np.round(np.average(weights, axis=0))
weights_avg_expected = [55.0] * 10
assert list(weights_avg_actual) == weights_avg_expected
def test_stab_generator_random_graph() -> None:
np.random.seed(42)
from miplearn.problems.stab import MaxWeightStableSetGenerator
gen = MaxWeightStableSetGenerator(
w=uniform(loc=50.0, scale=10.0),
n=randint(low=30, high=41),
p=uniform(loc=0.5, scale=0.0),
fix_graph=False,
)
data = gen.generate(1_000)
n_nodes = [d.graph.number_of_nodes() for d in data]
n_edges = [d.graph.number_of_edges() for d in data]
assert np.round(np.mean(n_nodes)) == 35.0
assert np.round(np.mean(n_edges), -1) == 300.0
for model in [
build_stab_model_pyomo(data),
build_stab_model_gurobipy(data),
]:
with NamedTemporaryFile() as tempfile:
with H5File(tempfile.name) as h5:
model.optimize()
model.extract_after_mip(h5)
assert h5.get_scalar("mip_obj_value") == -2.0

View File

@@ -1,100 +1,72 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import json
import numpy as np
from numpy.linalg import norm
from miplearn.problems.tsp import (
TravelingSalesmanData,
TravelingSalesmanGenerator,
build_tsp_model,
)
from scipy.spatial.distance import pdist, squareform
from scipy.stats import uniform, randint
from miplearn.problems.tsp import TravelingSalesmanGenerator, TravelingSalesmanInstance
from miplearn.solvers.learning import LearningSolver
from miplearn.solvers.tests import assert_equals
from scipy.stats import randint, uniform
def test_generator() -> None:
data = TravelingSalesmanGenerator(
def test_tsp_generator() -> None:
np.random.seed(42)
gen = TravelingSalesmanGenerator(
x=uniform(loc=0.0, scale=1000.0),
y=uniform(loc=0.0, scale=1000.0),
n=randint(low=100, high=101),
gamma=uniform(loc=0.95, scale=0.1),
n=randint(low=3, high=4),
gamma=uniform(loc=1.0, scale=0.25),
fix_cities=True,
).generate(100)
assert len(data) == 100
assert data[0].n_cities == 100
assert norm(data[0].distances - data[0].distances.T) < 1e-6
d = [d.distances[0, 1] for d in data]
assert np.std(d) > 0
def test_instance() -> None:
n_cities = 4
distances = np.array(
[
[0.0, 1.0, 2.0, 1.0],
[1.0, 0.0, 1.0, 2.0],
[2.0, 1.0, 0.0, 1.0],
[1.0, 2.0, 1.0, 0.0],
]
round=True,
)
instance = TravelingSalesmanInstance(n_cities, distances)
solver = LearningSolver()
solver._solve(instance)
assert len(instance.get_samples()) == 1
sample = instance.get_samples()[0]
assert_equals(sample.get_array("mip_var_values"), [1.0, 0.0, 1.0, 1.0, 0.0, 1.0])
assert sample.get_scalar("mip_lower_bound") == 4.0
assert sample.get_scalar("mip_upper_bound") == 4.0
data = gen.generate(2)
assert data[0].distances.tolist() == [
[0.0, 591.0, 996.0],
[591.0, 0.0, 765.0],
[996.0, 765.0, 0.0],
]
assert data[1].distances.tolist() == [
[0.0, 556.0, 853.0],
[556.0, 0.0, 779.0],
[853.0, 779.0, 0.0],
]
def test_subtour() -> None:
n_cities = 6
cities = np.array(
[
[0.0, 0.0],
[1.0, 0.0],
[2.0, 0.0],
[3.0, 0.0],
[0.0, 1.0],
[3.0, 1.0],
]
def test_tsp() -> None:
data = TravelingSalesmanData(
n_cities=6,
distances=squareform(
pdist(
[
[0.0, 0.0],
[1.0, 0.0],
[2.0, 0.0],
[3.0, 0.0],
[0.0, 1.0],
[3.0, 1.0],
]
)
),
)
distances = squareform(pdist(cities))
instance = TravelingSalesmanInstance(n_cities, distances)
solver = LearningSolver()
solver._solve(instance)
samples = instance.get_samples()
assert len(samples) == 1
sample = samples[0]
lazy_encoded = sample.get_scalar("mip_constr_lazy")
assert lazy_encoded is not None
lazy = json.loads(lazy_encoded)
assert lazy == {
"st[0,1,4]": [0, 1, 4],
"st[2,3,5]": [2, 3, 5],
}
assert_equals(
sample.get_array("mip_var_values"),
[
1.0,
0.0,
0.0,
1.0,
0.0,
1.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
1.0,
1.0,
],
)
solver._fit([instance])
solver._solve(instance)
model = build_tsp_model(data)
model.optimize()
assert model.inner.getAttr("x", model.inner.getVars()) == [
1.0,
0.0,
0.0,
1.0,
0.0,
1.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
1.0,
1.0,
]

71
tests/problems/test_uc.py Normal file
View File

@@ -0,0 +1,71 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import numpy as np
from scipy.stats import uniform, randint
from miplearn.problems.uc import (
UnitCommitmentData,
build_uc_model,
UnitCommitmentGenerator,
)
def test_generator() -> None:
np.random.seed(42)
gen = UnitCommitmentGenerator(
n_units=randint(low=3, high=4),
n_periods=randint(low=4, high=5),
max_power=uniform(loc=50, scale=450),
min_power=uniform(loc=0.25, scale=0.5),
cost_startup=uniform(loc=1, scale=1),
cost_prod=uniform(loc=1, scale=1),
cost_fixed=uniform(loc=1, scale=1),
min_uptime=randint(low=1, high=8),
min_downtime=randint(low=1, high=8),
cost_jitter=uniform(loc=0.75, scale=0.5),
demand_jitter=uniform(loc=0.9, scale=0.2),
fix_units=True,
)
data = gen.generate(2)
assert data[0].demand.tolist() == [430.3, 518.65, 448.16, 860.61]
assert data[0].min_power.tolist() == [120.05, 156.73, 124.44]
assert data[0].max_power.tolist() == [218.54, 477.82, 379.4]
assert data[0].min_uptime.tolist() == [3, 3, 5]
assert data[0].min_downtime.tolist() == [4, 3, 6]
assert data[0].cost_startup.tolist() == [1.06, 1.72, 1.94]
assert data[0].cost_prod.tolist() == [1.0, 1.99, 1.62]
assert data[0].cost_fixed.tolist() == [1.61, 1.01, 1.02]
assert data[1].demand.tolist() == [407.3, 476.18, 458.77, 840.38]
assert data[1].min_power.tolist() == [120.05, 156.73, 124.44]
assert data[1].max_power.tolist() == [218.54, 477.82, 379.4]
assert data[1].min_uptime.tolist() == [3, 3, 5]
assert data[1].min_downtime.tolist() == [4, 3, 6]
assert data[1].cost_startup.tolist() == [1.32, 1.69, 2.29]
assert data[1].cost_prod.tolist() == [1.09, 1.94, 1.23]
assert data[1].cost_fixed.tolist() == [1.97, 1.04, 0.96]
def test_uc() -> None:
data = UnitCommitmentData(
demand=np.array([10, 12, 15, 10, 8, 5]),
min_power=np.array([5, 5, 10]),
max_power=np.array([10, 8, 20]),
min_uptime=np.array([4, 3, 2]),
min_downtime=np.array([4, 3, 2]),
cost_startup=np.array([100, 120, 200]),
cost_prod=np.array([1.0, 1.25, 1.5]),
cost_fixed=np.array([10, 12, 9]),
)
model = build_uc_model(data)
model.optimize()
assert model.inner.objVal == 154.5
if __name__ == "__main__":
data = UnitCommitmentGenerator().generate(1)[0]
model = build_uc_model(data)
model.optimize()

View File

@@ -0,0 +1,21 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import networkx as nx
import numpy as np
from miplearn.problems.vertexcover import (
MinWeightVertexCoverData,
build_vertexcover_model,
)
def test_stab() -> None:
data = MinWeightVertexCoverData(
graph=nx.cycle_graph(5),
weights=np.array([1.0, 1.0, 1.0, 1.0, 1.0]),
)
model = build_vertexcover_model(data)
model.optimize()
assert model.inner.objVal == 3.0