mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-10 11:28:51 -06:00
MIPLearn v0.3
This commit is contained in:
53
tests/problems/test_pmedian.py
Normal file
53
tests/problems/test_pmedian.py
Normal file
@@ -0,0 +1,53 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import numpy as np
|
||||
from scipy.stats import uniform, randint
|
||||
|
||||
from miplearn.problems.pmedian import PMedianGenerator, build_pmedian_model
|
||||
|
||||
|
||||
def test_pmedian() -> None:
|
||||
np.random.seed(42)
|
||||
gen = PMedianGenerator(
|
||||
x=uniform(loc=0.0, scale=100.0),
|
||||
y=uniform(loc=0.0, scale=100.0),
|
||||
n=randint(low=5, high=6),
|
||||
p=randint(low=2, high=3),
|
||||
demands=uniform(loc=0, scale=20),
|
||||
capacities=uniform(loc=0, scale=100),
|
||||
distances_jitter=uniform(loc=0.95, scale=0.1),
|
||||
demands_jitter=uniform(loc=0.95, scale=0.1),
|
||||
capacities_jitter=uniform(loc=0.95, scale=0.1),
|
||||
fixed=True,
|
||||
)
|
||||
data = gen.generate(2)
|
||||
|
||||
assert data[0].p == 2
|
||||
assert data[0].demands.tolist() == [0.41, 19.4, 16.65, 4.25, 3.64]
|
||||
assert data[0].capacities.tolist() == [18.34, 30.42, 52.48, 43.19, 29.12]
|
||||
assert data[0].distances.tolist() == [
|
||||
[0.0, 50.17, 82.42, 32.76, 33.2],
|
||||
[50.17, 0.0, 72.64, 72.51, 17.06],
|
||||
[82.42, 72.64, 0.0, 71.69, 70.92],
|
||||
[32.76, 72.51, 71.69, 0.0, 56.56],
|
||||
[33.2, 17.06, 70.92, 56.56, 0.0],
|
||||
]
|
||||
|
||||
assert data[1].p == 2
|
||||
assert data[1].demands.tolist() == [0.42, 19.03, 16.68, 4.27, 3.53]
|
||||
assert data[1].capacities.tolist() == [19.2, 31.26, 54.79, 44.9, 29.41]
|
||||
assert data[1].distances.tolist() == [
|
||||
[0.0, 51.6, 83.31, 33.77, 31.95],
|
||||
[51.6, 0.0, 70.25, 71.09, 17.05],
|
||||
[83.31, 70.25, 0.0, 68.81, 67.62],
|
||||
[33.77, 71.09, 68.81, 0.0, 58.88],
|
||||
[31.95, 17.05, 67.62, 58.88, 0.0],
|
||||
]
|
||||
|
||||
model = build_pmedian_model(data[0])
|
||||
assert model.inner.numVars == 30
|
||||
assert model.inner.numConstrs == 11
|
||||
model.optimize()
|
||||
assert round(model.inner.objVal) == 107
|
||||
Reference in New Issue
Block a user