MIPLearn v0.3

This commit is contained in:
2023-06-08 11:25:39 -05:00
parent 6cc253a903
commit 1ea989d48a
172 changed files with 10495 additions and 24812 deletions

View File

@@ -0,0 +1,91 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from tempfile import NamedTemporaryFile
import numpy as np
from scipy.stats import randint, uniform
from miplearn.h5 import H5File
from miplearn.problems.setcover import (
SetCoverData,
build_setcover_model_gurobipy,
SetCoverGenerator,
build_setcover_model_pyomo,
)
def test_set_cover_generator() -> None:
np.random.seed(42)
gen = SetCoverGenerator(
n_elements=randint(low=3, high=4),
n_sets=randint(low=5, high=6),
costs=uniform(loc=0.0, scale=100.0),
costs_jitter=uniform(loc=0.95, scale=0.10),
density=uniform(loc=0.5, scale=0),
K=uniform(loc=25, scale=0),
fix_sets=False,
)
data = gen.generate(2)
assert data[0].costs.round(1).tolist() == [136.8, 86.2, 25.7, 27.3, 102.5]
assert data[0].incidence_matrix.tolist() == [
[1, 0, 1, 0, 1],
[1, 1, 0, 0, 0],
[1, 0, 0, 1, 1],
]
assert data[1].costs.round(1).tolist() == [63.5, 76.6, 48.1, 74.1, 93.3]
assert data[1].incidence_matrix.tolist() == [
[1, 1, 0, 1, 1],
[0, 1, 0, 1, 0],
[0, 1, 1, 0, 0],
]
def test_set_cover_generator_with_fixed_sets() -> None:
np.random.seed(42)
gen = SetCoverGenerator(
n_elements=randint(low=3, high=4),
n_sets=randint(low=5, high=6),
costs=uniform(loc=0.0, scale=100.0),
costs_jitter=uniform(loc=0.95, scale=0.10),
density=uniform(loc=0.5, scale=0.00),
fix_sets=True,
)
data = gen.generate(3)
assert data[0].costs.tolist() == [136.75, 86.17, 25.71, 27.31, 102.48]
assert data[1].costs.tolist() == [135.38, 82.26, 26.92, 26.58, 98.28]
assert data[2].costs.tolist() == [138.37, 85.15, 26.95, 27.22, 106.17]
print(data[0].incidence_matrix)
for i in range(3):
assert data[i].incidence_matrix.tolist() == [
[1, 0, 1, 0, 1],
[1, 1, 0, 0, 0],
[1, 0, 0, 1, 1],
]
def test_set_cover() -> None:
data = SetCoverData(
costs=np.array([5, 10, 12, 6, 8]),
incidence_matrix=np.array(
[
[1, 0, 0, 1, 0],
[1, 1, 0, 0, 0],
[0, 0, 1, 1, 1],
],
),
)
for model in [
build_setcover_model_pyomo(data),
build_setcover_model_gurobipy(data),
]:
with NamedTemporaryFile() as tempfile:
with H5File(tempfile.name) as h5:
model.optimize()
model.extract_after_mip(h5)
assert h5.get_scalar("mip_obj_value") == 11.0