|
|
@ -28,6 +28,9 @@ import pickle
|
|
|
|
import logging
|
|
|
|
import logging
|
|
|
|
logging.getLogger('pyomo.core').setLevel(logging.ERROR)
|
|
|
|
logging.getLogger('pyomo.core').setLevel(logging.ERROR)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n_jobs = 10
|
|
|
|
|
|
|
|
time_limit = 300
|
|
|
|
|
|
|
|
|
|
|
|
args = docopt(__doc__)
|
|
|
|
args = docopt(__doc__)
|
|
|
|
basepath = args["<challenge>"]
|
|
|
|
basepath = args["<challenge>"]
|
|
|
|
pathlib.Path(basepath).mkdir(parents=True, exist_ok=True)
|
|
|
|
pathlib.Path(basepath).mkdir(parents=True, exist_ok=True)
|
|
|
@ -45,36 +48,15 @@ def load(filename):
|
|
|
|
return pickle.load(file)
|
|
|
|
return pickle.load(file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train_solver_factory():
|
|
|
|
|
|
|
|
solver = pe.SolverFactory('gurobi_persistent')
|
|
|
|
|
|
|
|
solver.options["threads"] = 4
|
|
|
|
|
|
|
|
solver.options["TimeLimit"] = 300
|
|
|
|
|
|
|
|
return solver
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_solver_factory():
|
|
|
|
|
|
|
|
solver = pe.SolverFactory('gurobi_persistent')
|
|
|
|
|
|
|
|
solver.options["threads"] = 4
|
|
|
|
|
|
|
|
solver.options["TimeLimit"] = 300
|
|
|
|
|
|
|
|
return solver
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train():
|
|
|
|
def train():
|
|
|
|
problem_name, challenge_name = args["<challenge>"].split("/")
|
|
|
|
problem_name, challenge_name = args["<challenge>"].split("/")
|
|
|
|
pkg = importlib.import_module("miplearn.problems.%s" % problem_name)
|
|
|
|
pkg = importlib.import_module("miplearn.problems.%s" % problem_name)
|
|
|
|
challenge = getattr(pkg, challenge_name)()
|
|
|
|
challenge = getattr(pkg, challenge_name)()
|
|
|
|
train_instances = challenge.training_instances
|
|
|
|
train_instances = challenge.training_instances[:10]
|
|
|
|
test_instances = challenge.test_instances
|
|
|
|
test_instances = challenge.test_instances[:10]
|
|
|
|
solver = LearningSolver(
|
|
|
|
solver = LearningSolver(time_limit=time_limit, components={})
|
|
|
|
internal_solver_factory=train_solver_factory,
|
|
|
|
solver.parallel_solve(train_instances, n_jobs=n_jobs)
|
|
|
|
components={
|
|
|
|
solver.fit(n_jobs=n_jobs)
|
|
|
|
"warm-start": WarmStartComponent(),
|
|
|
|
|
|
|
|
#"branch-priority": BranchPriorityComponent(),
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
solver.parallel_solve(train_instances, n_jobs=10)
|
|
|
|
|
|
|
|
solver.fit(n_jobs=10)
|
|
|
|
|
|
|
|
solver.save_state("%s/training_data.bin" % basepath)
|
|
|
|
|
|
|
|
save(train_instances, "%s/train_instances.bin" % basepath)
|
|
|
|
save(train_instances, "%s/train_instances.bin" % basepath)
|
|
|
|
save(test_instances, "%s/test_instances.bin" % basepath)
|
|
|
|
save(test_instances, "%s/test_instances.bin" % basepath)
|
|
|
|
|
|
|
|
|
|
|
@ -82,39 +64,31 @@ def train():
|
|
|
|
def test_baseline():
|
|
|
|
def test_baseline():
|
|
|
|
solvers = {
|
|
|
|
solvers = {
|
|
|
|
"baseline": LearningSolver(
|
|
|
|
"baseline": LearningSolver(
|
|
|
|
internal_solver_factory=test_solver_factory,
|
|
|
|
time_limit=time_limit,
|
|
|
|
components={},
|
|
|
|
components={},
|
|
|
|
),
|
|
|
|
),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
test_instances = load("%s/test_instances.bin" % basepath)
|
|
|
|
test_instances = load("%s/test_instances.bin" % basepath)
|
|
|
|
benchmark = BenchmarkRunner(solvers)
|
|
|
|
benchmark = BenchmarkRunner(solvers)
|
|
|
|
benchmark.parallel_solve(test_instances, n_jobs=10)
|
|
|
|
benchmark.parallel_solve(test_instances, n_jobs=n_jobs)
|
|
|
|
benchmark.save_results("%s/benchmark_baseline.csv" % basepath)
|
|
|
|
benchmark.save_results("%s/benchmark_baseline.csv" % basepath)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_ml():
|
|
|
|
def test_ml():
|
|
|
|
solvers = {
|
|
|
|
solvers = {
|
|
|
|
"ml-exact": LearningSolver(
|
|
|
|
"ml-exact": LearningSolver(
|
|
|
|
internal_solver_factory=test_solver_factory,
|
|
|
|
time_limit=time_limit,
|
|
|
|
components={
|
|
|
|
|
|
|
|
"warm-start": WarmStartComponent(),
|
|
|
|
|
|
|
|
#"branch-priority": BranchPriorityComponent(),
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
),
|
|
|
|
),
|
|
|
|
"ml-heuristic": LearningSolver(
|
|
|
|
"ml-heuristic": LearningSolver(
|
|
|
|
internal_solver_factory=test_solver_factory,
|
|
|
|
time_limit=time_limit,
|
|
|
|
mode="heuristic",
|
|
|
|
mode="heuristic",
|
|
|
|
components={
|
|
|
|
|
|
|
|
"warm-start": WarmStartComponent(),
|
|
|
|
|
|
|
|
#"branch-priority": BranchPriorityComponent(),
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
),
|
|
|
|
),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
test_instances = load("%s/test_instances.bin" % basepath)
|
|
|
|
test_instances = load("%s/test_instances.bin" % basepath)
|
|
|
|
benchmark = BenchmarkRunner(solvers)
|
|
|
|
benchmark = BenchmarkRunner(solvers)
|
|
|
|
benchmark.load_state("%s/training_data.bin" % basepath)
|
|
|
|
benchmark.load_state("%s/training_data.bin" % basepath)
|
|
|
|
benchmark.load_results("%s/benchmark_baseline.csv" % basepath)
|
|
|
|
benchmark.load_results("%s/benchmark_baseline.csv" % basepath)
|
|
|
|
benchmark.parallel_solve(test_instances, n_jobs=10)
|
|
|
|
benchmark.parallel_solve(test_instances, n_jobs=n_jobs)
|
|
|
|
benchmark.save_results("%s/benchmark_ml.csv" % basepath)
|
|
|
|
benchmark.save_results("%s/benchmark_ml.csv" % basepath)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -178,9 +152,9 @@ def charts():
|
|
|
|
if __name__ == "__main__":
|
|
|
|
if __name__ == "__main__":
|
|
|
|
if args["train"]:
|
|
|
|
if args["train"]:
|
|
|
|
train()
|
|
|
|
train()
|
|
|
|
if args["test-baseline"]:
|
|
|
|
#if args["test-baseline"]:
|
|
|
|
test_baseline()
|
|
|
|
# test_baseline()
|
|
|
|
if args["test-ml"]:
|
|
|
|
#if args["test-ml"]:
|
|
|
|
test_ml()
|
|
|
|
# test_ml()
|
|
|
|
if args["charts"]:
|
|
|
|
#if args["charts"]:
|
|
|
|
charts()
|
|
|
|
# charts()
|