|
|
@ -5,6 +5,7 @@ from typing import cast
|
|
|
|
from unittest.mock import Mock
|
|
|
|
from unittest.mock import Mock
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
from numpy.testing import assert_array_equal
|
|
|
|
from numpy.testing import assert_array_equal
|
|
|
|
from scipy.stats import randint
|
|
|
|
from scipy.stats import randint
|
|
|
|
|
|
|
|
|
|
|
@ -12,13 +13,83 @@ from miplearn.classifiers import Classifier
|
|
|
|
from miplearn.classifiers.threshold import Threshold
|
|
|
|
from miplearn.classifiers.threshold import Threshold
|
|
|
|
from miplearn.components import classifier_evaluation_dict
|
|
|
|
from miplearn.components import classifier_evaluation_dict
|
|
|
|
from miplearn.components.primal import PrimalSolutionComponent
|
|
|
|
from miplearn.components.primal import PrimalSolutionComponent
|
|
|
|
from miplearn.features import TrainingSample, Variable, Features
|
|
|
|
from miplearn.features import (
|
|
|
|
|
|
|
|
TrainingSample,
|
|
|
|
|
|
|
|
Variable,
|
|
|
|
|
|
|
|
Features,
|
|
|
|
|
|
|
|
Sample,
|
|
|
|
|
|
|
|
InstanceFeatures,
|
|
|
|
|
|
|
|
)
|
|
|
|
from miplearn.instance.base import Instance
|
|
|
|
from miplearn.instance.base import Instance
|
|
|
|
from miplearn.problems.tsp import TravelingSalesmanGenerator
|
|
|
|
from miplearn.problems.tsp import TravelingSalesmanGenerator
|
|
|
|
from miplearn.solvers.learning import LearningSolver
|
|
|
|
from miplearn.solvers.learning import LearningSolver
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_xy() -> None:
|
|
|
|
@pytest.fixture
|
|
|
|
|
|
|
|
def sample() -> Sample:
|
|
|
|
|
|
|
|
sample = Sample(
|
|
|
|
|
|
|
|
after_load=Features(
|
|
|
|
|
|
|
|
variables={
|
|
|
|
|
|
|
|
"x[0]": Variable(category="default"),
|
|
|
|
|
|
|
|
"x[1]": Variable(category=None),
|
|
|
|
|
|
|
|
"x[2]": Variable(category="default"),
|
|
|
|
|
|
|
|
"x[3]": Variable(category="default"),
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
after_lp=Features(
|
|
|
|
|
|
|
|
instance=InstanceFeatures(),
|
|
|
|
|
|
|
|
variables={
|
|
|
|
|
|
|
|
"x[0]": Variable(),
|
|
|
|
|
|
|
|
"x[1]": Variable(),
|
|
|
|
|
|
|
|
"x[2]": Variable(),
|
|
|
|
|
|
|
|
"x[3]": Variable(),
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
after_mip=Features(
|
|
|
|
|
|
|
|
variables={
|
|
|
|
|
|
|
|
"x[0]": Variable(value=0.0),
|
|
|
|
|
|
|
|
"x[1]": Variable(value=0.0),
|
|
|
|
|
|
|
|
"x[2]": Variable(value=1.0),
|
|
|
|
|
|
|
|
"x[3]": Variable(value=0.0),
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
sample.after_lp.instance.to_list = Mock(return_value=[5.0]) # type: ignore
|
|
|
|
|
|
|
|
sample.after_lp.variables["x[0]"].to_list = Mock( # type: ignore
|
|
|
|
|
|
|
|
return_value=[0.0, 0.0]
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
sample.after_lp.variables["x[2]"].to_list = Mock( # type: ignore
|
|
|
|
|
|
|
|
return_value=[1.0, 0.0]
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
sample.after_lp.variables["x[3]"].to_list = Mock( # type: ignore
|
|
|
|
|
|
|
|
return_value=[1.0, 1.0]
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_xy(sample: Sample) -> None:
|
|
|
|
|
|
|
|
x_expected = {
|
|
|
|
|
|
|
|
"default": [
|
|
|
|
|
|
|
|
[5.0, 0.0, 0.0],
|
|
|
|
|
|
|
|
[5.0, 1.0, 0.0],
|
|
|
|
|
|
|
|
[5.0, 1.0, 1.0],
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
y_expected = {
|
|
|
|
|
|
|
|
"default": [
|
|
|
|
|
|
|
|
[True, False],
|
|
|
|
|
|
|
|
[False, True],
|
|
|
|
|
|
|
|
[True, False],
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
xy = PrimalSolutionComponent().sample_xy(sample)
|
|
|
|
|
|
|
|
assert xy is not None
|
|
|
|
|
|
|
|
x_actual, y_actual = xy
|
|
|
|
|
|
|
|
assert x_actual == x_expected
|
|
|
|
|
|
|
|
assert y_actual == y_expected
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_xy_old() -> None:
|
|
|
|
features = Features(
|
|
|
|
features = Features(
|
|
|
|
variables={
|
|
|
|
variables={
|
|
|
|
"x[0]": Variable(
|
|
|
|
"x[0]": Variable(
|
|
|
|