Rename methods that use TrainingSample to _old

This commit is contained in:
2021-04-11 21:00:04 -05:00
parent 5fd13981d4
commit 2da60dd293
13 changed files with 63 additions and 63 deletions

View File

@@ -10,7 +10,7 @@ from miplearn.instance.base import Instance
def test_xy_instance() -> None:
def _sample_xy(features: Features, sample: str) -> Tuple[Dict, Dict]:
def _sample_xy_old(features: Features, sample: str) -> Tuple[Dict, Dict]:
x = {
"s1": {
"category_a": [
@@ -60,7 +60,7 @@ def test_xy_instance() -> None:
instance_2 = Mock(spec=Instance)
instance_2.training_data = ["s3"]
instance_2.features = {}
comp.sample_xy = _sample_xy # type: ignore
comp.sample_xy_old = _sample_xy_old # type: ignore
x_expected = {
"category_a": [
[1, 2, 3],

View File

@@ -160,7 +160,7 @@ def test_sample_predict_evaluate(training_instances: List[Instance]) -> None:
training_instances[0].training_data[0],
)
assert pred == ["c1", "c4"]
ev = comp.sample_evaluate(
ev = comp.sample_evaluate_old(
training_instances[0],
training_instances[0].training_data[0],
)

View File

@@ -33,7 +33,7 @@ def features() -> Features:
@pytest.fixture
def sample() -> TrainingSample:
def sample_old() -> TrainingSample:
return TrainingSample(
lower_bound=1.0,
upper_bound=2.0,
@@ -50,7 +50,7 @@ def sample_without_lp() -> TrainingSample:
@pytest.fixture
def sample_without_ub() -> TrainingSample:
def sample_without_ub_old() -> TrainingSample:
return TrainingSample(
lower_bound=1.0,
lp_value=3.0,
@@ -59,7 +59,7 @@ def sample_without_ub() -> TrainingSample:
def test_sample_xy(
instance: Instance,
sample: TrainingSample,
sample_old: TrainingSample,
) -> None:
x_expected = {
"Lower bound": [[1.0, 2.0, 3.0]],
@@ -69,7 +69,7 @@ def test_sample_xy(
"Lower bound": [[1.0]],
"Upper bound": [[2.0]],
}
xy = ObjectiveValueComponent().sample_xy(instance, sample)
xy = ObjectiveValueComponent().sample_xy_old(instance, sample_old)
assert xy is not None
x_actual, y_actual = xy
assert x_actual == x_expected
@@ -88,7 +88,7 @@ def test_sample_xy_without_lp(
"Lower bound": [[1.0]],
"Upper bound": [[2.0]],
}
xy = ObjectiveValueComponent().sample_xy(instance, sample_without_lp)
xy = ObjectiveValueComponent().sample_xy_old(instance, sample_without_lp)
assert xy is not None
x_actual, y_actual = xy
assert x_actual == x_expected
@@ -97,14 +97,14 @@ def test_sample_xy_without_lp(
def test_sample_xy_without_ub(
instance: Instance,
sample_without_ub: TrainingSample,
sample_without_ub_old: TrainingSample,
) -> None:
x_expected = {
"Lower bound": [[1.0, 2.0, 3.0]],
"Upper bound": [[1.0, 2.0, 3.0]],
}
y_expected = {"Lower bound": [[1.0]]}
xy = ObjectiveValueComponent().sample_xy(instance, sample_without_ub)
xy = ObjectiveValueComponent().sample_xy_old(instance, sample_without_ub_old)
assert xy is not None
x_actual, y_actual = xy
assert x_actual == x_expected
@@ -179,9 +179,9 @@ def test_fit_xy_without_ub() -> None:
def test_sample_predict(
instance: Instance,
sample: TrainingSample,
sample_old: TrainingSample,
) -> None:
x, y = ObjectiveValueComponent().sample_xy(instance, sample)
x, y = ObjectiveValueComponent().sample_xy_old(instance, sample_old)
comp = ObjectiveValueComponent()
comp.regressors["Lower bound"] = Mock(spec=Regressor)
comp.regressors["Upper bound"] = Mock(spec=Regressor)
@@ -191,7 +191,7 @@ def test_sample_predict(
comp.regressors["Upper bound"].predict = Mock( # type: ignore
side_effect=lambda _: np.array([[60.0]])
)
pred = comp.sample_predict(instance, sample)
pred = comp.sample_predict(instance, sample_old)
assert pred == {
"Lower bound": 50.0,
"Upper bound": 60.0,
@@ -208,15 +208,15 @@ def test_sample_predict(
def test_sample_predict_without_ub(
instance: Instance,
sample_without_ub: TrainingSample,
sample_without_ub_old: TrainingSample,
) -> None:
x, y = ObjectiveValueComponent().sample_xy(instance, sample_without_ub)
x, y = ObjectiveValueComponent().sample_xy_old(instance, sample_without_ub_old)
comp = ObjectiveValueComponent()
comp.regressors["Lower bound"] = Mock(spec=Regressor)
comp.regressors["Lower bound"].predict = Mock( # type: ignore
side_effect=lambda _: np.array([[50.0]])
)
pred = comp.sample_predict(instance, sample_without_ub)
pred = comp.sample_predict(instance, sample_without_ub_old)
assert pred == {
"Lower bound": 50.0,
}
@@ -226,13 +226,13 @@ def test_sample_predict_without_ub(
)
def test_sample_evaluate(instance: Instance, sample: TrainingSample) -> None:
def test_sample_evaluate(instance: Instance, sample_old: TrainingSample) -> None:
comp = ObjectiveValueComponent()
comp.regressors["Lower bound"] = Mock(spec=Regressor)
comp.regressors["Lower bound"].predict = lambda _: np.array([[1.05]]) # type: ignore
comp.regressors["Upper bound"] = Mock(spec=Regressor)
comp.regressors["Upper bound"].predict = lambda _: np.array([[2.50]]) # type: ignore
ev = comp.sample_evaluate(instance, sample)
ev = comp.sample_evaluate_old(instance, sample_old)
assert ev == {
"Lower bound": {
"Actual value": 1.0,

View File

@@ -68,7 +68,7 @@ def test_xy() -> None:
[True, False],
]
}
xy = PrimalSolutionComponent().sample_xy(instance, sample)
xy = PrimalSolutionComponent().sample_xy_old(instance, sample)
assert xy is not None
x_actual, y_actual = xy
assert x_actual == x_expected
@@ -119,7 +119,7 @@ def test_xy_without_lp_solution() -> None:
[True, False],
]
}
xy = PrimalSolutionComponent().sample_xy(instance, sample)
xy = PrimalSolutionComponent().sample_xy_old(instance, sample)
assert xy is not None
x_actual, y_actual = xy
assert x_actual == x_expected
@@ -164,7 +164,7 @@ def test_predict() -> None:
"x[2]": 0.9,
}
)
x, _ = PrimalSolutionComponent().sample_xy(instance, sample)
x, _ = PrimalSolutionComponent().sample_xy_old(instance, sample)
comp = PrimalSolutionComponent()
comp.classifiers = {"default": clf}
comp.thresholds = {"default": thr}
@@ -253,7 +253,7 @@ def test_evaluate() -> None:
"x[4]": 1.0,
}
)
ev = comp.sample_evaluate(instance, sample)
ev = comp.sample_evaluate_old(instance, sample)
assert ev == {
0: classifier_evaluation_dict(tp=1, fp=1, tn=3, fn=0),
1: classifier_evaluation_dict(tp=2, fp=0, tn=1, fn=2),

View File

@@ -116,7 +116,7 @@ def test_usage_with_solver(instance: Instance) -> None:
stats: LearningSolveStats = {}
# LearningSolver calls before_solve_mip
component.before_solve_mip(
component.before_solve_mip_old(
solver=solver,
instance=instance,
model=None,
@@ -154,7 +154,7 @@ def test_usage_with_solver(instance: Instance) -> None:
internal.add_constraint.assert_not_called()
# LearningSolver calls after_solve_mip
component.after_solve_mip(
component.after_solve_mip_old(
solver=solver,
instance=instance,
model=None,
@@ -250,7 +250,7 @@ def test_sample_xy(
"type-a": [[False, True], [False, True], [True, False]],
"type-b": [[False, True]],
}
xy = StaticLazyConstraintsComponent().sample_xy(instance, sample)
xy = StaticLazyConstraintsComponent().sample_xy_old(instance, sample)
assert xy is not None
x_actual, y_actual = xy
assert x_actual == x_expected