Update benchmark script

master
Alinson S. Xavier 5 years ago
parent 4d4e2a3eef
commit 2e845058fc

@ -13,8 +13,9 @@ Usage:
Options: Options:
-h --help Show this screen -h --help Show this screen
--jobs=<n> Number of instances to solve simultaneously [default: 5] --train-jobs=<n> Number of instances to solve in parallel during training [default: 10]
--train-time-limit=<n> Solver time limit during training in seconds [default: 3600] --train-time-limit=<n> Solver time limit during training in seconds [default: 3600]
--test-jobs=<n> Number of instances to solve in parallel during test [default: 5]
--test-time-limit=<n> Solver time limit during test in seconds [default: 900] --test-time-limit=<n> Solver time limit during test in seconds [default: 900]
--solver-threads=<n> Number of threads the solver is allowed to use [default: 4] --solver-threads=<n> Number of threads the solver is allowed to use [default: 4]
""" """
@ -46,13 +47,6 @@ logging.getLogger("gurobipy").setLevel(logging.ERROR)
logging.getLogger("pyomo.core").setLevel(logging.ERROR) logging.getLogger("pyomo.core").setLevel(logging.ERROR)
logger = logging.getLogger("benchmark") logger = logging.getLogger("benchmark")
args = docopt(__doc__)
basepath = args["<challenge>"]
n_jobs = int(args["--jobs"])
n_threads = int(args["--solver-threads"])
train_time_limit = int(args["--train-time-limit"])
test_time_limit = int(args["--test-time-limit"])
def write_pickle_gz(obj, filename): def write_pickle_gz(obj, filename):
logger.info(f"Writing: {filename}") logger.info(f"Writing: {filename}")
@ -72,7 +66,8 @@ def write_multiple(objs, dirname):
write_pickle_gz(obj, f"{dirname}/{i:05d}.pkl.gz") write_pickle_gz(obj, f"{dirname}/{i:05d}.pkl.gz")
def train(): def train(args):
basepath = args["<challenge>"]
problem_name, challenge_name = args["<challenge>"].split("/") problem_name, challenge_name = args["<challenge>"].split("/")
pkg = importlib.import_module(f"miplearn.problems.{problem_name}") pkg = importlib.import_module(f"miplearn.problems.{problem_name}")
challenge = getattr(pkg, challenge_name)() challenge = getattr(pkg, challenge_name)()
@ -87,16 +82,20 @@ def train():
solver = LearningSolver( solver = LearningSolver(
solver=lambda: GurobiPyomoSolver( solver=lambda: GurobiPyomoSolver(
params={ params={
"TimeLimit": train_time_limit, "TimeLimit": int(args["--train-time-limit"]),
"Threads": n_threads, "Threads": int(args["--solver-threads"]),
} }
), ),
) )
solver.parallel_solve(train_instances, n_jobs=n_jobs) solver.parallel_solve(
train_instances,
n_jobs=int(args["--train-jobs"]),
)
Path(done_filename).touch(exist_ok=True) Path(done_filename).touch(exist_ok=True)
def test_baseline(): def test_baseline(args):
basepath = args["<challenge>"]
test_instances = glob.glob(f"{basepath}/test/*.gz") test_instances = glob.glob(f"{basepath}/test/*.gz")
csv_filename = f"{basepath}/benchmark_baseline.csv" csv_filename = f"{basepath}/benchmark_baseline.csv"
if not os.path.isfile(csv_filename): if not os.path.isfile(csv_filename):
@ -104,18 +103,22 @@ def test_baseline():
"baseline": LearningSolver( "baseline": LearningSolver(
solver=lambda: GurobiPyomoSolver( solver=lambda: GurobiPyomoSolver(
params={ params={
"TimeLimit": train_time_limit, "TimeLimit": int(args["--test-time-limit"]),
"Threads": n_threads, "Threads": int(args["--solver-threads"]),
} }
), ),
), ),
} }
benchmark = BenchmarkRunner(solvers) benchmark = BenchmarkRunner(solvers)
benchmark.parallel_solve(test_instances, n_jobs=n_jobs) benchmark.parallel_solve(
test_instances,
n_jobs=int(args["--test-jobs"]),
)
benchmark.save_results(csv_filename) benchmark.save_results(csv_filename)
def test_ml(): def test_ml(args):
basepath = args["<challenge>"]
test_instances = glob.glob(f"{basepath}/test/*.gz") test_instances = glob.glob(f"{basepath}/test/*.gz")
train_instances = glob.glob(f"{basepath}/train/*.gz") train_instances = glob.glob(f"{basepath}/train/*.gz")
csv_filename = f"{basepath}/benchmark_ml.csv" csv_filename = f"{basepath}/benchmark_ml.csv"
@ -124,16 +127,16 @@ def test_ml():
"ml-exact": LearningSolver( "ml-exact": LearningSolver(
solver=lambda: GurobiPyomoSolver( solver=lambda: GurobiPyomoSolver(
params={ params={
"TimeLimit": train_time_limit, "TimeLimit": int(args["--test-time-limit"]),
"Threads": n_threads, "Threads": int(args["--solver-threads"]),
} }
), ),
), ),
"ml-heuristic": LearningSolver( "ml-heuristic": LearningSolver(
solver=lambda: GurobiPyomoSolver( solver=lambda: GurobiPyomoSolver(
params={ params={
"TimeLimit": train_time_limit, "TimeLimit": int(args["--test-time-limit"]),
"Threads": n_threads, "Threads": int(args["--solver-threads"]),
} }
), ),
mode="heuristic", mode="heuristic",
@ -141,11 +144,15 @@ def test_ml():
} }
benchmark = BenchmarkRunner(solvers) benchmark = BenchmarkRunner(solvers)
benchmark.fit(train_instances) benchmark.fit(train_instances)
benchmark.parallel_solve(test_instances, n_jobs=n_jobs) benchmark.parallel_solve(
test_instances,
n_jobs=int(args["--test-jobs"]),
)
benchmark.save_results(csv_filename) benchmark.save_results(csv_filename)
def charts(): def charts(args):
basepath = args["<challenge>"]
sns.set_style("whitegrid") sns.set_style("whitegrid")
sns.set_palette("Blues_r") sns.set_palette("Blues_r")
@ -256,11 +263,12 @@ def charts():
if __name__ == "__main__": if __name__ == "__main__":
args = docopt(__doc__)
if args["train"]: if args["train"]:
train() train(args)
if args["test-baseline"]: if args["test-baseline"]:
test_baseline() test_baseline(args)
if args["test-ml"]: if args["test-ml"]:
test_ml() test_ml(args)
if args["charts"]: if args["charts"]:
charts() charts(args)

Loading…
Cancel
Save