mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Add run_benchmarks method
This commit is contained in:
@@ -11,6 +11,10 @@ import pandas as pd
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
from miplearn.solvers.pyomo.gurobi import GurobiPyomoSolver
|
||||
from sklearn.utils._testing import ignore_warnings
|
||||
from sklearn.exceptions import ConvergenceWarning
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -20,20 +24,6 @@ class BenchmarkRunner:
|
||||
Utility class that simplifies the task of comparing the performance of different
|
||||
solvers.
|
||||
|
||||
Example
|
||||
-------
|
||||
```python
|
||||
benchmark = BenchmarkRunner({
|
||||
"Baseline": LearningSolver(...),
|
||||
"Strategy A": LearningSolver(...),
|
||||
"Strategy B": LearningSolver(...),
|
||||
"Strategy C": LearningSolver(...),
|
||||
})
|
||||
benchmark.fit(train_instances)
|
||||
benchmark.parallel_solve(test_instances, n_jobs=5)
|
||||
benchmark.save_results("result.csv")
|
||||
```
|
||||
|
||||
Parameters
|
||||
----------
|
||||
solvers: Dict[str, LearningSolver]
|
||||
@@ -55,7 +45,8 @@ class BenchmarkRunner:
|
||||
self,
|
||||
instances: List[Instance],
|
||||
n_jobs: int = 1,
|
||||
n_trials: int = 3,
|
||||
n_trials: int = 1,
|
||||
progress: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Solves the given instances in parallel and collect benchmark statistics.
|
||||
@@ -77,8 +68,9 @@ class BenchmarkRunner:
|
||||
results = solver.parallel_solve(
|
||||
trials,
|
||||
n_jobs=n_jobs,
|
||||
label="Solve (%s)" % solver_name,
|
||||
label="solve (%s)" % solver_name,
|
||||
discard_outputs=True,
|
||||
progress=progress,
|
||||
)
|
||||
for i in range(len(trials)):
|
||||
idx = i % len(instances)
|
||||
@@ -99,7 +91,12 @@ class BenchmarkRunner:
|
||||
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
||||
self.results.to_csv(filename)
|
||||
|
||||
def fit(self, instances: List[Instance], n_jobs: int = 1) -> None:
|
||||
def fit(
|
||||
self,
|
||||
instances: List[Instance],
|
||||
n_jobs: int = 1,
|
||||
progress: bool = True,
|
||||
) -> None:
|
||||
"""
|
||||
Trains all solvers with the provided training instances.
|
||||
|
||||
@@ -111,14 +108,126 @@ class BenchmarkRunner:
|
||||
Number of parallel processes to use.
|
||||
"""
|
||||
components: List[Component] = []
|
||||
for solver in self.solvers.values():
|
||||
for (solver_name, solver) in self.solvers.items():
|
||||
if solver_name == "baseline":
|
||||
continue
|
||||
components += solver.components.values()
|
||||
Component.fit_multiple(
|
||||
components,
|
||||
instances,
|
||||
n_jobs=n_jobs,
|
||||
progress=progress,
|
||||
)
|
||||
|
||||
def plot_results(self) -> None:
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
|
||||
sns.set_style("whitegrid")
|
||||
sns.set_palette("Blues_r")
|
||||
groups = self.results.groupby("Instance")
|
||||
best_lower_bound = groups["mip_lower_bound"].transform("max")
|
||||
best_upper_bound = groups["mip_upper_bound"].transform("min")
|
||||
self.results["Relative lower bound"] = (
|
||||
self.results["mip_lower_bound"] / best_lower_bound
|
||||
)
|
||||
self.results["Relative upper bound"] = (
|
||||
self.results["mip_upper_bound"] / best_upper_bound
|
||||
)
|
||||
|
||||
sense = self.results.loc[0, "mip_sense"]
|
||||
if (sense == "min").any():
|
||||
primal_column = "Relative upper bound"
|
||||
obj_column = "mip_upper_bound"
|
||||
predicted_obj_column = "Objective: Predicted upper bound"
|
||||
else:
|
||||
primal_column = "Relative lower bound"
|
||||
obj_column = "mip_lower_bound"
|
||||
predicted_obj_column = "Objective: Predicted lower bound"
|
||||
|
||||
palette = {
|
||||
"baseline": "#9b59b6",
|
||||
"ml-exact": "#3498db",
|
||||
"ml-heuristic": "#95a5a6",
|
||||
}
|
||||
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(
|
||||
nrows=2,
|
||||
ncols=2,
|
||||
figsize=(8, 8),
|
||||
)
|
||||
|
||||
# Wallclock time
|
||||
sns.stripplot(
|
||||
x="Solver",
|
||||
y="mip_wallclock_time",
|
||||
data=self.results,
|
||||
ax=ax1,
|
||||
jitter=0.25,
|
||||
palette=palette,
|
||||
size=2.0,
|
||||
)
|
||||
sns.barplot(
|
||||
x="Solver",
|
||||
y="mip_wallclock_time",
|
||||
data=self.results,
|
||||
ax=ax1,
|
||||
errwidth=0.0,
|
||||
alpha=0.4,
|
||||
palette=palette,
|
||||
)
|
||||
ax1.set(ylabel="Wallclock time (s)")
|
||||
|
||||
# Gap
|
||||
sns.stripplot(
|
||||
x="Solver",
|
||||
y="Gap",
|
||||
jitter=0.25,
|
||||
data=self.results[self.results["Solver"] != "ml-heuristic"],
|
||||
ax=ax2,
|
||||
palette=palette,
|
||||
size=2.0,
|
||||
)
|
||||
ax2.set(ylabel="Relative MIP gap")
|
||||
|
||||
# Relative primal bound
|
||||
sns.stripplot(
|
||||
x="Solver",
|
||||
y=primal_column,
|
||||
jitter=0.25,
|
||||
data=self.results[self.results["Solver"] == "ml-heuristic"],
|
||||
ax=ax3,
|
||||
palette=palette,
|
||||
size=2.0,
|
||||
)
|
||||
sns.scatterplot(
|
||||
x=obj_column,
|
||||
y=predicted_obj_column,
|
||||
hue="Solver",
|
||||
data=self.results[self.results["Solver"] == "ml-exact"],
|
||||
ax=ax4,
|
||||
palette=palette,
|
||||
size=2.0,
|
||||
)
|
||||
|
||||
# Predicted vs actual primal bound
|
||||
xlim, ylim = ax4.get_xlim(), ax4.get_ylim()
|
||||
ax4.plot(
|
||||
[-1e10, 1e10],
|
||||
[-1e10, 1e10],
|
||||
ls="-",
|
||||
color="#cccccc",
|
||||
)
|
||||
ax4.set_xlim(xlim)
|
||||
ax4.set_ylim(ylim)
|
||||
ax4.get_legend().remove()
|
||||
ax4.set(
|
||||
ylabel="Predicted value",
|
||||
xlabel="Actual value",
|
||||
)
|
||||
|
||||
fig.tight_layout()
|
||||
|
||||
def _silence_miplearn_logger(self) -> None:
|
||||
miplearn_logger = logging.getLogger("miplearn")
|
||||
self.prev_log_level = miplearn_logger.getEffectiveLevel()
|
||||
@@ -127,3 +236,44 @@ class BenchmarkRunner:
|
||||
def _restore_miplearn_logger(self) -> None:
|
||||
miplearn_logger = logging.getLogger("miplearn")
|
||||
miplearn_logger.setLevel(self.prev_log_level)
|
||||
|
||||
|
||||
@ignore_warnings(category=ConvergenceWarning)
|
||||
def run_benchmarks(
|
||||
train_instances: List[Instance],
|
||||
test_instances: List[Instance],
|
||||
n_jobs: int = 4,
|
||||
n_trials: int = 1,
|
||||
progress: bool = False,
|
||||
) -> None:
|
||||
benchmark = BenchmarkRunner(
|
||||
solvers={
|
||||
"baseline": LearningSolver(
|
||||
solver=GurobiPyomoSolver(),
|
||||
),
|
||||
"ml-exact": LearningSolver(
|
||||
solver=GurobiPyomoSolver(),
|
||||
),
|
||||
"ml-heuristic": LearningSolver(
|
||||
solver=GurobiPyomoSolver(),
|
||||
mode="heuristic",
|
||||
),
|
||||
}
|
||||
)
|
||||
benchmark.solvers["baseline"].parallel_solve(
|
||||
train_instances,
|
||||
n_jobs=n_jobs,
|
||||
progress=progress,
|
||||
)
|
||||
benchmark.fit(
|
||||
train_instances,
|
||||
n_jobs=n_jobs,
|
||||
progress=progress,
|
||||
)
|
||||
benchmark.parallel_solve(
|
||||
test_instances,
|
||||
n_jobs=n_jobs,
|
||||
n_trials=n_trials,
|
||||
progress=progress,
|
||||
)
|
||||
benchmark.plot_results()
|
||||
|
||||
Reference in New Issue
Block a user