parent
8153dfc825
commit
31ca45036a
@ -0,0 +1,3 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
@ -0,0 +1,40 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pyomo import environ as pe
|
||||
|
||||
from miplearn.instance import Instance
|
||||
from miplearn.solvers.gurobi import GurobiSolver
|
||||
from miplearn.solvers.pyomo.base import BasePyomoSolver
|
||||
from tests.solvers import _is_subclass_or_instance
|
||||
|
||||
|
||||
class InfeasiblePyomoInstance(Instance):
|
||||
def to_model(self) -> pe.ConcreteModel:
|
||||
model = pe.ConcreteModel()
|
||||
model.x = pe.Var([0], domain=pe.Binary)
|
||||
model.OBJ = pe.Objective(expr=model.x[0], sense=pe.maximize)
|
||||
model.eq = pe.Constraint(expr=model.x[0] >= 2)
|
||||
return model
|
||||
|
||||
|
||||
class InfeasibleGurobiInstance(Instance):
|
||||
def to_model(self) -> Any:
|
||||
import gurobipy as gp
|
||||
from gurobipy import GRB
|
||||
|
||||
model = gp.Model()
|
||||
x = model.addVars(1, vtype=GRB.BINARY, name="x")
|
||||
model.addConstr(x[0] >= 2)
|
||||
model.setObjective(x[0])
|
||||
return model
|
||||
|
||||
|
||||
def get_infeasible_instance(solver):
|
||||
if _is_subclass_or_instance(solver, BasePyomoSolver):
|
||||
return InfeasiblePyomoInstance()
|
||||
if _is_subclass_or_instance(solver, GurobiSolver):
|
||||
return InfeasibleGurobiInstance()
|
@ -0,0 +1,39 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
from typing import Any
|
||||
|
||||
from miplearn import Instance, BasePyomoSolver, GurobiSolver
|
||||
import pyomo.environ as pe
|
||||
|
||||
from tests.solvers import _is_subclass_or_instance
|
||||
|
||||
|
||||
class PyomoInstanceWithRedundancy(Instance):
|
||||
def to_model(self) -> pe.ConcreteModel:
|
||||
model = pe.ConcreteModel()
|
||||
model.x = pe.Var([0, 1], domain=pe.Binary)
|
||||
model.OBJ = pe.Objective(expr=model.x[0] + model.x[1], sense=pe.maximize)
|
||||
model.eq1 = pe.Constraint(expr=model.x[0] + model.x[1] <= 1)
|
||||
model.eq2 = pe.Constraint(expr=model.x[0] + model.x[1] <= 2)
|
||||
return model
|
||||
|
||||
|
||||
class GurobiInstanceWithRedundancy(Instance):
|
||||
def to_model(self) -> Any:
|
||||
import gurobipy as gp
|
||||
from gurobipy import GRB
|
||||
|
||||
model = gp.Model()
|
||||
x = model.addVars(2, vtype=GRB.BINARY, name="x")
|
||||
model.addConstr(x[0] + x[1] <= 1)
|
||||
model.addConstr(x[0] + x[1] <= 2)
|
||||
model.setObjective(x[0] + x[1], GRB.MAXIMIZE)
|
||||
return model
|
||||
|
||||
|
||||
def get_instance_with_redundancy(solver):
|
||||
if _is_subclass_or_instance(solver, BasePyomoSolver):
|
||||
return PyomoInstanceWithRedundancy()
|
||||
if _is_subclass_or_instance(solver, GurobiSolver):
|
||||
return GurobiInstanceWithRedundancy()
|
Loading…
Reference in new issue