Add types to tsp.py

This commit is contained in:
2021-04-07 20:33:28 -05:00
parent f7545204d7
commit 38212fb858

View File

@@ -1,6 +1,7 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from typing import List, Tuple, FrozenSet, Any, Optional
import networkx as nx
import numpy as np
@@ -11,16 +12,16 @@ from scipy.stats import uniform, randint
from scipy.stats.distributions import rv_frozen
from miplearn.instance.base import Instance
from miplearn.types import VariableName, Category
class ChallengeA:
def __init__(
self,
seed=42,
n_training_instances=500,
n_test_instances=50,
):
seed: int = 42,
n_training_instances: int = 500,
n_test_instances: int = 50,
) -> None:
np.random.seed(seed)
self.generator = TravelingSalesmanGenerator(
x=uniform(loc=0.0, scale=1000.0),
@@ -38,97 +39,16 @@ class ChallengeA:
self.test_instances = self.generator.generate(n_test_instances)
class TravelingSalesmanGenerator:
"""Random generator for the Traveling Salesman Problem."""
def __init__(
self,
x=uniform(loc=0.0, scale=1000.0),
y=uniform(loc=0.0, scale=1000.0),
n=randint(low=100, high=101),
gamma=uniform(loc=1.0, scale=0.0),
fix_cities=True,
round=True,
):
"""Initializes the problem generator.
Initially, the generator creates n cities (x_1,y_1),...,(x_n,y_n) where n, x_i and y_i are
sampled independently from the provided probability distributions `n`, `x` and `y`. For each
(unordered) pair of cities (i,j), the distance d[i,j] between them is set to:
d[i,j] = gamma[i,j] \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
where gamma is sampled from the provided probability distribution `gamma`.
If fix_cities=True, the list of cities is kept the same for all generated instances. The
gamma values, and therefore also the distances, are still different.
By default, all distances d[i,j] are rounded to the nearest integer. If `round=False`
is provided, this rounding will be disabled.
Arguments
---------
x: rv_continuous
Probability distribution for the x-coordinate of each city.
y: rv_continuous
Probability distribution for the y-coordinate of each city.
n: rv_discrete
Probability distribution for the number of cities.
fix_cities: bool
If False, cities will be resampled for every generated instance. Otherwise, list of
cities will be computed once, during the constructor.
round: bool
If True, distances are rounded to the nearest integer.
"""
assert isinstance(x, rv_frozen), "x should be a SciPy probability distribution"
assert isinstance(y, rv_frozen), "y should be a SciPy probability distribution"
assert isinstance(n, rv_frozen), "n should be a SciPy probability distribution"
assert isinstance(
gamma,
rv_frozen,
), "gamma should be a SciPy probability distribution"
self.x = x
self.y = y
self.n = n
self.gamma = gamma
self.round = round
if fix_cities:
self.fixed_n, self.fixed_cities = self._generate_cities()
else:
self.fixed_n = None
self.fixed_cities = None
def generate(self, n_samples):
def _sample():
if self.fixed_cities is not None:
n, cities = self.fixed_n, self.fixed_cities
else:
n, cities = self._generate_cities()
distances = squareform(pdist(cities)) * self.gamma.rvs(size=(n, n))
distances = np.tril(distances) + np.triu(distances.T, 1)
if self.round:
distances = distances.round()
return TravelingSalesmanInstance(n, distances)
return [_sample() for _ in range(n_samples)]
def _generate_cities(self):
n = self.n.rvs()
cities = np.array([(self.x.rvs(), self.y.rvs()) for _ in range(n)])
return n, cities
class TravelingSalesmanInstance(Instance):
"""An instance ot the Traveling Salesman Problem.
Given a list of cities and the distance between each pair of cities, the problem asks for the
shortest route starting at the first city, visiting each other city exactly once, then
returning to the first city. This problem is a generalization of the Hamiltonian path problem,
one of Karp's 21 NP-complete problems.
Given a list of cities and the distance between each pair of cities, the problem
asks for the shortest route starting at the first city, visiting each other city
exactly once, then returning to the first city. This problem is a generalization
of the Hamiltonian path problem, one of Karp's 21 NP-complete problems.
"""
def __init__(self, n_cities, distances):
def __init__(self, n_cities: int, distances: np.ndarray) -> None:
super().__init__()
assert isinstance(distances, np.ndarray)
assert distances.shape == (n_cities, n_cities)
@@ -140,7 +60,7 @@ class TravelingSalesmanInstance(Instance):
self.varname_to_index = {f"x[{e}]": e for e in self.edges}
@overrides
def to_model(self):
def to_model(self) -> pe.ConcreteModel:
model = pe.ConcreteModel()
model.x = pe.Var(self.edges, domain=pe.Binary)
model.obj = pe.Objective(
@@ -161,11 +81,11 @@ class TravelingSalesmanInstance(Instance):
return model
@overrides
def get_variable_category(self, var_name):
def get_variable_category(self, var_name: VariableName) -> Category:
return self.varname_to_index[var_name]
@overrides
def find_violated_lazy_constraints(self, model):
def find_violated_lazy_constraints(self, model: Any) -> List[FrozenSet]:
selected_edges = [e for e in self.edges if model.x[e].value > 0.5]
graph = nx.Graph()
graph.add_edges_from(selected_edges)
@@ -177,7 +97,7 @@ class TravelingSalesmanInstance(Instance):
return violations
@overrides
def build_lazy_constraint(self, model, component):
def build_lazy_constraint(self, model: Any, component: FrozenSet) -> Any:
cut_edges = [
e
for e in self.edges
@@ -185,3 +105,89 @@ class TravelingSalesmanInstance(Instance):
or (e[0] not in component and e[1] in component)
]
return model.eq_subtour.add(sum(model.x[e] for e in cut_edges) >= 2)
class TravelingSalesmanGenerator:
"""Random generator for the Traveling Salesman Problem."""
def __init__(
self,
x: rv_frozen = uniform(loc=0.0, scale=1000.0),
y: rv_frozen = uniform(loc=0.0, scale=1000.0),
n: rv_frozen = randint(low=100, high=101),
gamma: rv_frozen = uniform(loc=1.0, scale=0.0),
fix_cities: bool = True,
round: bool = True,
) -> None:
"""Initializes the problem generator.
Initially, the generator creates n cities (x_1,y_1),...,(x_n,y_n) where n,
x_i and y_i are sampled independently from the provided probability
distributions `n`, `x` and `y`. For each (unordered) pair of cities (i,j),
the distance d[i,j] between them is set to:
d[i,j] = gamma[i,j] \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
where gamma is sampled from the provided probability distribution `gamma`.
If fix_cities=True, the list of cities is kept the same for all generated
instances. The gamma values, and therefore also the distances, are still
different.
By default, all distances d[i,j] are rounded to the nearest integer. If
`round=False` is provided, this rounding will be disabled.
Arguments
---------
x: rv_continuous
Probability distribution for the x-coordinate of each city.
y: rv_continuous
Probability distribution for the y-coordinate of each city.
n: rv_discrete
Probability distribution for the number of cities.
fix_cities: bool
If False, cities will be resampled for every generated instance. Otherwise, list
of cities will be computed once, during the constructor.
round: bool
If True, distances are rounded to the nearest integer.
"""
assert isinstance(x, rv_frozen), "x should be a SciPy probability distribution"
assert isinstance(y, rv_frozen), "y should be a SciPy probability distribution"
assert isinstance(n, rv_frozen), "n should be a SciPy probability distribution"
assert isinstance(
gamma,
rv_frozen,
), "gamma should be a SciPy probability distribution"
self.x = x
self.y = y
self.n = n
self.gamma = gamma
self.round = round
if fix_cities:
self.fixed_n: Optional[int]
self.fixed_cities: Optional[np.ndarray]
self.fixed_n, self.fixed_cities = self._generate_cities()
else:
self.fixed_n = None
self.fixed_cities = None
def generate(self, n_samples: int) -> List[TravelingSalesmanInstance]:
def _sample() -> TravelingSalesmanInstance:
if self.fixed_cities is not None:
assert self.fixed_n is not None
n, cities = self.fixed_n, self.fixed_cities
else:
n, cities = self._generate_cities()
distances = squareform(pdist(cities)) * self.gamma.rvs(size=(n, n))
distances = np.tril(distances) + np.triu(distances.T, 1)
if self.round:
distances = distances.round()
return TravelingSalesmanInstance(n, distances)
return [_sample() for _ in range(n_samples)]
def _generate_cities(self) -> Tuple[int, np.ndarray]:
n = self.n.rvs()
cities = np.array([(self.x.rvs(), self.y.rvs()) for _ in range(n)])
return n, cities