|
|
|
@ -3,14 +3,41 @@
|
|
|
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
|
|
|
|
|
|
import logging
|
|
|
|
|
from abc import ABC, abstractmethod
|
|
|
|
|
import pickle
|
|
|
|
|
import gzip
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
from tqdm.auto import tqdm
|
|
|
|
|
from abc import ABC, abstractmethod
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class InstanceIterator:
|
|
|
|
|
def __init__(self, instances):
|
|
|
|
|
self.instances = instances
|
|
|
|
|
self.current = 0
|
|
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
def __next__(self):
|
|
|
|
|
if self.current >= len(self.instances):
|
|
|
|
|
raise StopIteration
|
|
|
|
|
result = self.instances[self.current]
|
|
|
|
|
self.current += 1
|
|
|
|
|
if isinstance(result, str):
|
|
|
|
|
logger.info("Read: %s" % result)
|
|
|
|
|
if result.endswith(".gz"):
|
|
|
|
|
with gzip.GzipFile(result, "rb") as file:
|
|
|
|
|
result = pickle.load(file)
|
|
|
|
|
else:
|
|
|
|
|
with open(result, "rb") as file:
|
|
|
|
|
result = pickle.load(file)
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Extractor(ABC):
|
|
|
|
|
@abstractmethod
|
|
|
|
|
def extract(self, instances,):
|
|
|
|
@ -34,7 +61,7 @@ class Extractor(ABC):
|
|
|
|
|
class VariableFeaturesExtractor(Extractor):
|
|
|
|
|
def extract(self, instances):
|
|
|
|
|
result = {}
|
|
|
|
|
for instance in tqdm(instances,
|
|
|
|
|
for instance in tqdm(InstanceIterator(instances),
|
|
|
|
|
desc="Extract (vars)",
|
|
|
|
|
disable=len(instances) < 5):
|
|
|
|
|
instance_features = instance.get_instance_features()
|
|
|
|
@ -59,7 +86,7 @@ class SolutionExtractor(Extractor):
|
|
|
|
|
|
|
|
|
|
def extract(self, instances):
|
|
|
|
|
result = {}
|
|
|
|
|
for instance in tqdm(instances,
|
|
|
|
|
for instance in tqdm(InstanceIterator(instances),
|
|
|
|
|
desc="Extract (solution)",
|
|
|
|
|
disable=len(instances) < 5):
|
|
|
|
|
var_split = self.split_variables(instance)
|
|
|
|
@ -87,7 +114,7 @@ class InstanceFeaturesExtractor(Extractor):
|
|
|
|
|
instance.get_instance_features(),
|
|
|
|
|
instance.lp_value,
|
|
|
|
|
])
|
|
|
|
|
for instance in instances
|
|
|
|
|
for instance in InstanceIterator(instances)
|
|
|
|
|
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -98,8 +125,11 @@ class ObjectiveValueExtractor(Extractor):
|
|
|
|
|
|
|
|
|
|
def extract(self, instances):
|
|
|
|
|
if self.kind == "lower bound":
|
|
|
|
|
return np.array([[instance.lower_bound] for instance in instances])
|
|
|
|
|
return np.array([[instance.lower_bound]
|
|
|
|
|
for instance in InstanceIterator(instances)])
|
|
|
|
|
if self.kind == "upper bound":
|
|
|
|
|
return np.array([[instance.upper_bound] for instance in instances])
|
|
|
|
|
return np.array([[instance.upper_bound]
|
|
|
|
|
for instance in InstanceIterator(instances)])
|
|
|
|
|
if self.kind == "lp":
|
|
|
|
|
return np.array([[instance.lp_value] for instance in instances])
|
|
|
|
|
return np.array([[instance.lp_value]
|
|
|
|
|
for instance in InstanceIterator(instances)])
|
|
|
|
|