Docs: minor fixes

pull/3/head
Alinson S. Xavier 5 years ago
parent 857e6af1a0
commit 3ac9852869

@ -272,7 +272,7 @@ dtype: float64
<h3 id="using-customized-ml-classifiers-and-regressors">Using customized ML classifiers and regressors</h3> <h3 id="using-customized-ml-classifiers-and-regressors">Using customized ML classifiers and regressors</h3>
<p>By default, given a training set of instantes, MIPLearn trains a fixed set of ML classifiers and regressors, then <p>By default, given a training set of instantes, MIPLearn trains a fixed set of ML classifiers and regressors, then
selects the best one based on cross-validation performance. Alternatively, the user specify which model a component selects the best one based on cross-validation performance. Alternatively, the user may specify which ML model a component
should use through the <code>classifier</code> or <code>regressor</code> contructor parameters. The provided classifiers and regressors must should use through the <code>classifier</code> or <code>regressor</code> contructor parameters. The provided classifiers and regressors must
follow the sklearn API. In particular, classifiers must provide the methods <code>fit</code>, <code>predict_proba</code> and <code>predict</code>, follow the sklearn API. In particular, classifiers must provide the methods <code>fit</code>, <code>predict_proba</code> and <code>predict</code>,
while regressors must provide the methods <code>fit</code> and <code>predict</code></p> while regressors must provide the methods <code>fit</code> and <code>predict</code></p>

@ -273,5 +273,5 @@
<!-- <!--
MkDocs version : 1.1 MkDocs version : 1.1
Build Date UTC : 2020-05-05 18:57:59 Build Date UTC : 2020-05-05 19:32:35
--> -->

File diff suppressed because one or more lines are too long

Binary file not shown.

@ -141,7 +141,7 @@ dtype: float64
### Using customized ML classifiers and regressors ### Using customized ML classifiers and regressors
By default, given a training set of instantes, MIPLearn trains a fixed set of ML classifiers and regressors, then By default, given a training set of instantes, MIPLearn trains a fixed set of ML classifiers and regressors, then
selects the best one based on cross-validation performance. Alternatively, the user specify which model a component selects the best one based on cross-validation performance. Alternatively, the user may specify which ML model a component
should use through the `classifier` or `regressor` contructor parameters. The provided classifiers and regressors must should use through the `classifier` or `regressor` contructor parameters. The provided classifiers and regressors must
follow the sklearn API. In particular, classifiers must provide the methods `fit`, `predict_proba` and `predict`, follow the sklearn API. In particular, classifiers must provide the methods `fit`, `predict_proba` and `predict`,
while regressors must provide the methods `fit` and `predict` while regressors must provide the methods `fit` and `predict`

Loading…
Cancel
Save