mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Improve stable set generator
This commit is contained in:
@@ -7,23 +7,99 @@ import pyomo.environ as pe
|
|||||||
import networkx as nx
|
import networkx as nx
|
||||||
from miplearn import Instance
|
from miplearn import Instance
|
||||||
import random
|
import random
|
||||||
|
from scipy.stats import uniform, randint, bernoulli
|
||||||
|
from scipy.stats.distributions import rv_frozen
|
||||||
|
|
||||||
|
|
||||||
class MaxStableSetGenerator:
|
class MaxWeightStableSetChallengeA:
|
||||||
def __init__(self, graph, base_weights, perturbation_scale=1.0):
|
"""
|
||||||
self.graph = graph
|
- Fixed random graph (200 vertices, 5% density)
|
||||||
self.base_weights = base_weights
|
- Uniformly random weights in the [100., 125.] interval
|
||||||
self.perturbation_scale = perturbation_scale
|
- 500 training instances
|
||||||
|
- 100 test instances
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.generator = MaxWeightStableSetGenerator(w=uniform(loc=100., scale=25.),
|
||||||
|
n=randint(low=200, high=201),
|
||||||
|
density=uniform(loc=0.05, scale=0.0),
|
||||||
|
fix_graph=True)
|
||||||
|
|
||||||
|
def get_training_instances(self):
|
||||||
|
return self.generator.generate(500)
|
||||||
|
|
||||||
|
def get_test_instances(self):
|
||||||
|
return self.generator.generate(100)
|
||||||
|
|
||||||
|
|
||||||
|
class MaxWeightStableSetGenerator:
|
||||||
|
"""Random instance generator for the Maximum-Weight Stable Set Problem.
|
||||||
|
|
||||||
|
The generator has two modes of operation. When `fix_graph` is True, the random graph is
|
||||||
|
generated only once, during the constructor. Each instance is constructed by generating
|
||||||
|
random weights and by randomly deleting vertices and edges of this graph. When `fix_graph`
|
||||||
|
is False, a new random graph is created each time an instance is constructed.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
w=uniform(loc=10.0, scale=1.0),
|
||||||
|
pe=bernoulli(1.),
|
||||||
|
pv=bernoulli(1.),
|
||||||
|
n=randint(low=250, high=251),
|
||||||
|
density=uniform(loc=0.05, scale=0.05),
|
||||||
|
fix_graph=True):
|
||||||
|
"""Initializes the problem generator.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
w: rv_continuous
|
||||||
|
Probability distribution for the vertex weights.
|
||||||
|
pe: rv_continuous
|
||||||
|
Probability of an edge being deleted. Only used when fix_graph=True.
|
||||||
|
pv: rv_continuous
|
||||||
|
Probability of a vertex being deleted. Only used when fix_graph=True.
|
||||||
|
n: rv_discrete
|
||||||
|
Probability distribution for the number of vertices in the random graph.
|
||||||
|
density: rv_continuous
|
||||||
|
Probability distribution for the density of the random graph.
|
||||||
|
"""
|
||||||
|
assert isinstance(w, rv_frozen), "w should be a SciPy probability distribution"
|
||||||
|
assert isinstance(pe, rv_frozen), "pe should be a SciPy probability distribution"
|
||||||
|
assert isinstance(pv, rv_frozen), "pv should be a SciPy probability distribution"
|
||||||
|
assert isinstance(n, rv_frozen), "n should be a SciPy probability distribution"
|
||||||
|
assert isinstance(density, rv_frozen), "density should be a SciPy probability distribution"
|
||||||
|
self.w = w
|
||||||
|
self.n = n
|
||||||
|
self.density = density
|
||||||
|
self.fix_graph = fix_graph
|
||||||
|
self.graph = None
|
||||||
|
if fix_graph:
|
||||||
|
self.graph = self._generate_graph()
|
||||||
|
|
||||||
def generate(self, n_samples):
|
def generate(self, n_samples):
|
||||||
def _sample():
|
def _sample():
|
||||||
perturbation = np.random.rand(self.graph.number_of_nodes()) * self.perturbation_scale
|
if self.graph is not None:
|
||||||
weights = self.base_weights + perturbation
|
graph = self.graph
|
||||||
return MaxStableSetInstance(self.graph, weights)
|
else:
|
||||||
|
graph = self._generate_graph()
|
||||||
|
weights = self.w.rvs(graph.number_of_nodes())
|
||||||
|
return MaxWeightStableSetInstance(graph, weights)
|
||||||
return [_sample() for _ in range(n_samples)]
|
return [_sample() for _ in range(n_samples)]
|
||||||
|
|
||||||
|
def _generate_graph(self):
|
||||||
|
return nx.generators.random_graphs.binomial_graph(self.n.rvs(), self.density.rvs())
|
||||||
|
|
||||||
|
|
||||||
class MaxStableSetInstance(Instance):
|
class MaxWeightStableSetInstance(Instance):
|
||||||
|
"""An instance of the Maximum-Weight Stable Set Problem.
|
||||||
|
|
||||||
|
Given a graph G=(V,E) and a weight w_v for each vertex v, the problem asks for a stable
|
||||||
|
set S of G maximizing sum(w_v for v in S). A stable set (also called independent set) is
|
||||||
|
a subset of vertices, no two of which are adjacent.
|
||||||
|
|
||||||
|
This is one of Karp's 21 NP-complete problems.
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(self, graph, weights):
|
def __init__(self, graph, weights):
|
||||||
self.graph = graph
|
self.graph = graph
|
||||||
self.weights = weights
|
self.weights = weights
|
||||||
|
|||||||
0
miplearn/problems/tests/__init__.py
Normal file
0
miplearn/problems/tests/__init__.py
Normal file
45
miplearn/problems/tests/test_stab.py
Normal file
45
miplearn/problems/tests/test_stab.py
Normal file
@@ -0,0 +1,45 @@
|
|||||||
|
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||||
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||||
|
|
||||||
|
from miplearn import LearningSolver
|
||||||
|
from miplearn.problems.stab import MaxWeightStableSetInstance
|
||||||
|
from miplearn.problems.stab import MaxWeightStableSetGenerator
|
||||||
|
import networkx as nx
|
||||||
|
import numpy as np
|
||||||
|
from scipy.stats import uniform, randint
|
||||||
|
|
||||||
|
|
||||||
|
def test_stab():
|
||||||
|
graph = nx.cycle_graph(5)
|
||||||
|
weights = [1., 2., 3., 4., 5.]
|
||||||
|
instance = MaxWeightStableSetInstance(graph, weights)
|
||||||
|
solver = LearningSolver()
|
||||||
|
solver.solve(instance)
|
||||||
|
assert instance.model.OBJ() == 8.
|
||||||
|
|
||||||
|
|
||||||
|
def test_stab_generator_fixed_graph():
|
||||||
|
from miplearn.problems.stab import MaxWeightStableSetGenerator
|
||||||
|
gen = MaxWeightStableSetGenerator(w=uniform(loc=50., scale=10.),
|
||||||
|
n=randint(low=10, high=11),
|
||||||
|
density=uniform(loc=0.05, scale=0.),
|
||||||
|
fix_graph=True)
|
||||||
|
instances = gen.generate(1_000)
|
||||||
|
weights = np.array([instance.weights for instance in instances])
|
||||||
|
weights_avg_actual = np.round(np.average(weights, axis=0))
|
||||||
|
weights_avg_expected = [55.0] * 10
|
||||||
|
assert list(weights_avg_actual) == weights_avg_expected
|
||||||
|
|
||||||
|
|
||||||
|
def test_stab_generator_random_graph():
|
||||||
|
from miplearn.problems.stab import MaxWeightStableSetGenerator
|
||||||
|
gen = MaxWeightStableSetGenerator(w=uniform(loc=50., scale=10.),
|
||||||
|
n=randint(low=30, high=41),
|
||||||
|
density=uniform(loc=0.5, scale=0.),
|
||||||
|
fix_graph=False)
|
||||||
|
instances = gen.generate(1_000)
|
||||||
|
n_nodes = [instance.graph.number_of_nodes() for instance in instances]
|
||||||
|
n_edges = [instance.graph.number_of_edges() for instance in instances]
|
||||||
|
assert np.round(np.mean(n_nodes)) == 35.
|
||||||
|
assert np.round(np.mean(n_edges), -1) == 300.
|
||||||
@@ -4,27 +4,17 @@
|
|||||||
|
|
||||||
from miplearn import LearningSolver, BenchmarkRunner
|
from miplearn import LearningSolver, BenchmarkRunner
|
||||||
from miplearn.warmstart import KnnWarmStartPredictor
|
from miplearn.warmstart import KnnWarmStartPredictor
|
||||||
from miplearn.problems.stab import MaxStableSetInstance, MaxStableSetGenerator
|
from miplearn.problems.stab import MaxWeightStableSetGenerator
|
||||||
import networkx as nx
|
from scipy.stats import randint
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pyomo.environ as pe
|
import pyomo.environ as pe
|
||||||
import os.path
|
import os.path
|
||||||
|
|
||||||
|
|
||||||
def test_benchmark():
|
def test_benchmark():
|
||||||
graph = nx.cycle_graph(10)
|
|
||||||
base_weights = np.random.rand(10)
|
|
||||||
|
|
||||||
# Generate training and test instances
|
# Generate training and test instances
|
||||||
train_instances = MaxStableSetGenerator(graph=graph,
|
train_instances = MaxWeightStableSetGenerator(n=randint(low=25, high=26)).generate(5)
|
||||||
base_weights=base_weights,
|
test_instances = MaxWeightStableSetGenerator(n=randint(low=25, high=26)).generate(3)
|
||||||
perturbation_scale=1.0,
|
|
||||||
).generate(5)
|
|
||||||
|
|
||||||
test_instances = MaxStableSetGenerator(graph=graph,
|
|
||||||
base_weights=base_weights,
|
|
||||||
perturbation_scale=1.0,
|
|
||||||
).generate(3)
|
|
||||||
|
|
||||||
# Training phase...
|
# Training phase...
|
||||||
training_solver = LearningSolver()
|
training_solver = LearningSolver()
|
||||||
|
|||||||
@@ -1,31 +0,0 @@
|
|||||||
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
|
||||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
|
||||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
|
||||||
|
|
||||||
from miplearn import LearningSolver
|
|
||||||
from miplearn.problems.stab import MaxStableSetInstance, MaxStableSetGenerator
|
|
||||||
import networkx as nx
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
|
|
||||||
def test_stab():
|
|
||||||
graph = nx.cycle_graph(5)
|
|
||||||
weights = [1.0, 2.0, 3.0, 4.0, 5.0]
|
|
||||||
instance = MaxStableSetInstance(graph, weights)
|
|
||||||
solver = LearningSolver()
|
|
||||||
solver.solve(instance)
|
|
||||||
assert instance.model.OBJ() == 8.0
|
|
||||||
|
|
||||||
|
|
||||||
def test_stab_generator():
|
|
||||||
graph = nx.cycle_graph(5)
|
|
||||||
base_weights = [1.0, 2.0, 3.0, 4.0, 5.0]
|
|
||||||
instances = MaxStableSetGenerator(graph=graph,
|
|
||||||
base_weights=base_weights,
|
|
||||||
perturbation_scale=1.0,
|
|
||||||
).generate(100_000)
|
|
||||||
weights = np.array([instance.weights for instance in instances])
|
|
||||||
weights_avg = np.round(np.average(weights, axis=0), 2)
|
|
||||||
weights_std = np.round(np.std(weights, axis=0), 2)
|
|
||||||
assert list(weights_avg) == [1.50, 2.50, 3.50, 4.50, 5.50]
|
|
||||||
assert list(weights_std) == [0.29] * 5
|
|
||||||
@@ -18,6 +18,7 @@ class WarmStartPredictor(ABC):
|
|||||||
def fit(self, x_train, y_train):
|
def fit(self, x_train, y_train):
|
||||||
assert isinstance(x_train, np.ndarray)
|
assert isinstance(x_train, np.ndarray)
|
||||||
assert isinstance(y_train, np.ndarray)
|
assert isinstance(y_train, np.ndarray)
|
||||||
|
y_train = y_train.astype(int)
|
||||||
assert y_train.shape[0] == x_train.shape[0]
|
assert y_train.shape[0] == x_train.shape[0]
|
||||||
assert y_train.shape[1] == 2
|
assert y_train.shape[1] == 2
|
||||||
for i in [0,1]:
|
for i in [0,1]:
|
||||||
|
|||||||
Reference in New Issue
Block a user