|
|
@ -74,6 +74,14 @@ class BenchmarkRunner:
|
|
|
|
for (solver_name, solver) in self.solvers.items():
|
|
|
|
for (solver_name, solver) in self.solvers.items():
|
|
|
|
solver.fit(training_instances)
|
|
|
|
solver.fit(training_instances)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def computeGap(self, ub, lb):
|
|
|
|
|
|
|
|
# solver did not find a solution and/or bound, use maximum gap possible
|
|
|
|
|
|
|
|
if lb is None or ub is None or lb * ub < 0:
|
|
|
|
|
|
|
|
return 1.0
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
# divide by max(abs(ub),abs(lb)) to ensure gap <= 1
|
|
|
|
|
|
|
|
return (ub - lb) / max(abs(ub), abs(lb))
|
|
|
|
|
|
|
|
|
|
|
|
def _push_result(self, result, solver, solver_name, instance):
|
|
|
|
def _push_result(self, result, solver, solver_name, instance):
|
|
|
|
if self.results is None:
|
|
|
|
if self.results is None:
|
|
|
|
self.results = pd.DataFrame(
|
|
|
|
self.results = pd.DataFrame(
|
|
|
@ -93,7 +101,8 @@ class BenchmarkRunner:
|
|
|
|
)
|
|
|
|
)
|
|
|
|
lb = result["Lower bound"]
|
|
|
|
lb = result["Lower bound"]
|
|
|
|
ub = result["Upper bound"]
|
|
|
|
ub = result["Upper bound"]
|
|
|
|
gap = (ub - lb) / lb
|
|
|
|
gap = self.computeGap(ub, lb)
|
|
|
|
|
|
|
|
|
|
|
|
if "Predicted LB" not in result:
|
|
|
|
if "Predicted LB" not in result:
|
|
|
|
result["Predicted LB"] = float("nan")
|
|
|
|
result["Predicted LB"] = float("nan")
|
|
|
|
result["Predicted UB"] = float("nan")
|
|
|
|
result["Predicted UB"] = float("nan")
|
|
|
|