Always remove .mypy_cache; fix more mypy tests

master
Alinson S. Xavier 5 years ago
parent 32b6a8f3fa
commit 3f4336f902
No known key found for this signature in database
GPG Key ID: DCA0DAD4D2F58624

@ -42,6 +42,7 @@ reformat:
$(PYTHON) -m black .
test:
rm -rf .mypy_cache
$(MYPY) -p miplearn
$(MYPY) -p tests
$(MYPY) -p benchmark

@ -24,7 +24,7 @@ import importlib
import logging
import os
from pathlib import Path
from typing import Dict
from typing import Dict, List
import matplotlib.pyplot as plt
import pandas as pd
@ -39,6 +39,7 @@ from miplearn import (
setup_logger,
PickleGzInstance,
write_pickle_gz_multiple,
Instance,
)
setup_logger()
@ -59,7 +60,7 @@ def train(args: Dict) -> None:
done_filename = f"{basepath}/train/done"
if not os.path.isfile(done_filename):
train_instances = [
train_instances: List[Instance] = [
PickleGzInstance(f) for f in glob.glob(f"{basepath}/train/*.gz")
]
solver = LearningSolver(
@ -79,7 +80,9 @@ def train(args: Dict) -> None:
def test_baseline(args: Dict) -> None:
basepath = args["<challenge>"]
test_instances = [PickleGzInstance(f) for f in glob.glob(f"{basepath}/test/*.gz")]
test_instances: List[Instance] = [
PickleGzInstance(f) for f in glob.glob(f"{basepath}/test/*.gz")
]
csv_filename = f"{basepath}/benchmark_baseline.csv"
if not os.path.isfile(csv_filename):
solvers = {
@ -102,8 +105,12 @@ def test_baseline(args: Dict) -> None:
def test_ml(args: Dict) -> None:
basepath = args["<challenge>"]
test_instances = [PickleGzInstance(f) for f in glob.glob(f"{basepath}/test/*.gz")]
train_instances = [PickleGzInstance(f) for f in glob.glob(f"{basepath}/train/*.gz")]
test_instances: List[Instance] = [
PickleGzInstance(f) for f in glob.glob(f"{basepath}/test/*.gz")
]
train_instances: List[Instance] = [
PickleGzInstance(f) for f in glob.glob(f"{basepath}/train/*.gz")
]
csv_filename = f"{basepath}/benchmark_ml.csv"
if not os.path.isfile(csv_filename):
solvers = {

@ -20,7 +20,7 @@ def test_benchmark() -> None:
# Solve training instances
training_solver = LearningSolver()
training_solver.parallel_solve(train_instances, n_jobs=n_jobs)
training_solver.parallel_solve(train_instances, n_jobs=n_jobs) # type: ignore
# Benchmark
test_solvers = {
@ -28,8 +28,12 @@ def test_benchmark() -> None:
"Strategy B": LearningSolver(),
}
benchmark = BenchmarkRunner(test_solvers)
benchmark.fit(train_instances)
benchmark.parallel_solve(test_instances, n_jobs=n_jobs, n_trials=2)
benchmark.fit(train_instances) # type: ignore
benchmark.parallel_solve(
test_instances, # type: ignore
n_jobs=n_jobs,
n_trials=2,
)
assert benchmark.results.values.shape == (12, 20)
benchmark.write_csv("/tmp/benchmark.csv")

Loading…
Cancel
Save