mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Use np.ndarray for var_types, basis_status
This commit is contained in:
@@ -44,7 +44,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
names=np.array(["x[0]", "x[1]", "x[2]", "x[3]", "z"], dtype="S"),
|
||||
lower_bounds=np.array([0.0, 0.0, 0.0, 0.0, 0.0]),
|
||||
upper_bounds=np.array([1.0, 1.0, 1.0, 1.0, 67.0]),
|
||||
types=["B", "B", "B", "B", "C"],
|
||||
types=np.array(["B", "B", "B", "B", "C"], dtype="S"),
|
||||
obj_coeffs=np.array([505.0, 352.0, 458.0, 220.0, 0.0]),
|
||||
),
|
||||
)
|
||||
@@ -85,7 +85,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
solver.get_variable_attrs(),
|
||||
Variables(
|
||||
names=np.array(["x[0]", "x[1]", "x[2]", "x[3]", "z"], dtype="S"),
|
||||
basis_status=["U", "B", "U", "L", "U"],
|
||||
basis_status=np.array(["U", "B", "U", "L", "U"], dtype="S"),
|
||||
reduced_costs=np.array(
|
||||
[193.615385, 0.0, 187.230769, -23.692308, 13.538462]
|
||||
),
|
||||
|
||||
Reference in New Issue
Block a user