mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Use np.ndarray for var_types, basis_status
This commit is contained in:
@@ -36,7 +36,7 @@ class FeaturesExtractor:
|
|||||||
sample.put_array("static_var_lower_bounds", variables.lower_bounds)
|
sample.put_array("static_var_lower_bounds", variables.lower_bounds)
|
||||||
sample.put_array("static_var_names", variables.names)
|
sample.put_array("static_var_names", variables.names)
|
||||||
sample.put_array("static_var_obj_coeffs", variables.obj_coeffs)
|
sample.put_array("static_var_obj_coeffs", variables.obj_coeffs)
|
||||||
sample.put_vector("static_var_types", variables.types)
|
sample.put_array("static_var_types", variables.types)
|
||||||
sample.put_array("static_var_upper_bounds", variables.upper_bounds)
|
sample.put_array("static_var_upper_bounds", variables.upper_bounds)
|
||||||
sample.put_vector("static_constr_names", constraints.names)
|
sample.put_vector("static_constr_names", constraints.names)
|
||||||
# sample.put("static_constr_lhs", constraints.lhs)
|
# sample.put("static_constr_lhs", constraints.lhs)
|
||||||
@@ -69,7 +69,7 @@ class FeaturesExtractor:
|
|||||||
) -> None:
|
) -> None:
|
||||||
variables = solver.get_variables(with_static=False, with_sa=self.with_sa)
|
variables = solver.get_variables(with_static=False, with_sa=self.with_sa)
|
||||||
constraints = solver.get_constraints(with_static=False, with_sa=self.with_sa)
|
constraints = solver.get_constraints(with_static=False, with_sa=self.with_sa)
|
||||||
sample.put_vector("lp_var_basis_status", variables.basis_status)
|
sample.put_array("lp_var_basis_status", variables.basis_status)
|
||||||
sample.put_array("lp_var_reduced_costs", variables.reduced_costs)
|
sample.put_array("lp_var_reduced_costs", variables.reduced_costs)
|
||||||
sample.put_array("lp_var_sa_lb_down", variables.sa_lb_down)
|
sample.put_array("lp_var_sa_lb_down", variables.sa_lb_down)
|
||||||
sample.put_array("lp_var_sa_lb_up", variables.sa_lb_up)
|
sample.put_array("lp_var_sa_lb_up", variables.sa_lb_up)
|
||||||
|
|||||||
@@ -79,7 +79,7 @@ class GurobiSolver(InternalSolver):
|
|||||||
self._gp_constrs: List["gurobipy.Constr"] = []
|
self._gp_constrs: List["gurobipy.Constr"] = []
|
||||||
self._var_names: np.ndarray = np.empty(0)
|
self._var_names: np.ndarray = np.empty(0)
|
||||||
self._constr_names: List[str] = []
|
self._constr_names: List[str] = []
|
||||||
self._var_types: List[str] = []
|
self._var_types: np.ndarray = np.empty(0)
|
||||||
self._var_lbs: np.ndarray = np.empty(0)
|
self._var_lbs: np.ndarray = np.empty(0)
|
||||||
self._var_ubs: np.ndarray = np.empty(0)
|
self._var_ubs: np.ndarray = np.empty(0)
|
||||||
self._var_obj_coeffs: np.ndarray = np.empty(0)
|
self._var_obj_coeffs: np.ndarray = np.empty(0)
|
||||||
@@ -322,8 +322,9 @@ class GurobiSolver(InternalSolver):
|
|||||||
else:
|
else:
|
||||||
raise Exception(f"unknown vbasis: {basis_status}")
|
raise Exception(f"unknown vbasis: {basis_status}")
|
||||||
|
|
||||||
|
basis_status: Optional[np.ndarray] = None
|
||||||
upper_bounds, lower_bounds, types, values = None, None, None, None
|
upper_bounds, lower_bounds, types, values = None, None, None, None
|
||||||
obj_coeffs, reduced_costs, basis_status = None, None, None
|
obj_coeffs, reduced_costs = None, None
|
||||||
sa_obj_up, sa_ub_up, sa_lb_up = None, None, None
|
sa_obj_up, sa_ub_up, sa_lb_up = None, None, None
|
||||||
sa_obj_down, sa_ub_down, sa_lb_down = None, None, None
|
sa_obj_down, sa_ub_down, sa_lb_down = None, None, None
|
||||||
|
|
||||||
@@ -335,11 +336,12 @@ class GurobiSolver(InternalSolver):
|
|||||||
|
|
||||||
if self._has_lp_solution:
|
if self._has_lp_solution:
|
||||||
reduced_costs = np.array(model.getAttr("rc", self._gp_vars), dtype=float)
|
reduced_costs = np.array(model.getAttr("rc", self._gp_vars), dtype=float)
|
||||||
basis_status = list(
|
basis_status = np.array(
|
||||||
map(
|
[
|
||||||
_parse_gurobi_vbasis,
|
_parse_gurobi_vbasis(b)
|
||||||
model.getAttr("vbasis", self._gp_vars),
|
for b in model.getAttr("vbasis", self._gp_vars)
|
||||||
)
|
],
|
||||||
|
dtype="S",
|
||||||
)
|
)
|
||||||
|
|
||||||
if with_sa:
|
if with_sa:
|
||||||
@@ -513,7 +515,7 @@ class GurobiSolver(InternalSolver):
|
|||||||
self._apply_params(streams)
|
self._apply_params(streams)
|
||||||
assert self.model is not None
|
assert self.model is not None
|
||||||
for (i, var) in enumerate(self._gp_vars):
|
for (i, var) in enumerate(self._gp_vars):
|
||||||
if self._var_types[i] == "B":
|
if self._var_types[i] == b"B":
|
||||||
var.vtype = self.gp.GRB.CONTINUOUS
|
var.vtype = self.gp.GRB.CONTINUOUS
|
||||||
var.lb = 0.0
|
var.lb = 0.0
|
||||||
var.ub = 1.0
|
var.ub = 1.0
|
||||||
@@ -521,7 +523,7 @@ class GurobiSolver(InternalSolver):
|
|||||||
self.model.optimize()
|
self.model.optimize()
|
||||||
self._dirty = False
|
self._dirty = False
|
||||||
for (i, var) in enumerate(self._gp_vars):
|
for (i, var) in enumerate(self._gp_vars):
|
||||||
if self._var_types[i] == "B":
|
if self._var_types[i] == b"B":
|
||||||
var.vtype = self.gp.GRB.BINARY
|
var.vtype = self.gp.GRB.BINARY
|
||||||
log = streams[0].getvalue()
|
log = streams[0].getvalue()
|
||||||
self._has_lp_solution = self.model.solCount > 0
|
self._has_lp_solution = self.model.solCount > 0
|
||||||
@@ -590,7 +592,10 @@ class GurobiSolver(InternalSolver):
|
|||||||
self.model.getAttr("varName", gp_vars),
|
self.model.getAttr("varName", gp_vars),
|
||||||
dtype="S",
|
dtype="S",
|
||||||
)
|
)
|
||||||
var_types: List[str] = self.model.getAttr("vtype", gp_vars)
|
var_types: np.ndarray = np.array(
|
||||||
|
self.model.getAttr("vtype", gp_vars),
|
||||||
|
dtype="S",
|
||||||
|
)
|
||||||
var_ubs: np.ndarray = np.array(
|
var_ubs: np.ndarray = np.array(
|
||||||
self.model.getAttr("ub", gp_vars),
|
self.model.getAttr("ub", gp_vars),
|
||||||
dtype=float,
|
dtype=float,
|
||||||
@@ -611,7 +616,7 @@ class GurobiSolver(InternalSolver):
|
|||||||
f"Duplicated variable name detected: {var_names[i]}. "
|
f"Duplicated variable name detected: {var_names[i]}. "
|
||||||
f"Unique variable names are currently required."
|
f"Unique variable names are currently required."
|
||||||
)
|
)
|
||||||
if var_types[i] == "I":
|
if var_types[i] == b"I":
|
||||||
assert var_ubs[i] == 1.0, (
|
assert var_ubs[i] == 1.0, (
|
||||||
"Only binary and continuous variables are currently supported. "
|
"Only binary and continuous variables are currently supported. "
|
||||||
f"Integer variable {var_names[i]} has upper bound {var_ubs[i]}."
|
f"Integer variable {var_names[i]} has upper bound {var_ubs[i]}."
|
||||||
@@ -620,8 +625,8 @@ class GurobiSolver(InternalSolver):
|
|||||||
"Only binary and continuous variables are currently supported. "
|
"Only binary and continuous variables are currently supported. "
|
||||||
f"Integer variable {var_names[i]} has lower bound {var_ubs[i]}."
|
f"Integer variable {var_names[i]} has lower bound {var_ubs[i]}."
|
||||||
)
|
)
|
||||||
var_types[i] = "B"
|
var_types[i] = b"B"
|
||||||
assert var_types[i] in ["B", "C"], (
|
assert var_types[i] in [b"B", b"C"], (
|
||||||
"Only binary and continuous variables are currently supported. "
|
"Only binary and continuous variables are currently supported. "
|
||||||
f"Variable {var_names[i]} has type {var_types[i]}."
|
f"Variable {var_names[i]} has type {var_types[i]}."
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -51,7 +51,7 @@ class MIPSolveStats:
|
|||||||
@dataclass
|
@dataclass
|
||||||
class Variables:
|
class Variables:
|
||||||
names: Optional[np.ndarray] = None
|
names: Optional[np.ndarray] = None
|
||||||
basis_status: Optional[List[str]] = None
|
basis_status: Optional[np.ndarray] = None
|
||||||
lower_bounds: Optional[np.ndarray] = None
|
lower_bounds: Optional[np.ndarray] = None
|
||||||
obj_coeffs: Optional[np.ndarray] = None
|
obj_coeffs: Optional[np.ndarray] = None
|
||||||
reduced_costs: Optional[np.ndarray] = None
|
reduced_costs: Optional[np.ndarray] = None
|
||||||
@@ -61,7 +61,7 @@ class Variables:
|
|||||||
sa_obj_up: Optional[np.ndarray] = None
|
sa_obj_up: Optional[np.ndarray] = None
|
||||||
sa_ub_down: Optional[np.ndarray] = None
|
sa_ub_down: Optional[np.ndarray] = None
|
||||||
sa_ub_up: Optional[np.ndarray] = None
|
sa_ub_up: Optional[np.ndarray] = None
|
||||||
types: Optional[List[str]] = None
|
types: Optional[np.ndarray] = None
|
||||||
upper_bounds: Optional[np.ndarray] = None
|
upper_bounds: Optional[np.ndarray] = None
|
||||||
values: Optional[np.ndarray] = None
|
values: Optional[np.ndarray] = None
|
||||||
|
|
||||||
|
|||||||
@@ -327,7 +327,7 @@ class BasePyomoSolver(InternalSolver):
|
|||||||
|
|
||||||
return Variables(
|
return Variables(
|
||||||
names=_none_if_empty(np.array(names, dtype="S")),
|
names=_none_if_empty(np.array(names, dtype="S")),
|
||||||
types=_none_if_empty(types),
|
types=_none_if_empty(np.array(types, dtype="S")),
|
||||||
upper_bounds=_none_if_empty(np.array(upper_bounds, dtype=float)),
|
upper_bounds=_none_if_empty(np.array(upper_bounds, dtype=float)),
|
||||||
lower_bounds=_none_if_empty(np.array(lower_bounds, dtype=float)),
|
lower_bounds=_none_if_empty(np.array(lower_bounds, dtype=float)),
|
||||||
obj_coeffs=_none_if_empty(np.array(obj_coeffs, dtype=float)),
|
obj_coeffs=_none_if_empty(np.array(obj_coeffs, dtype=float)),
|
||||||
|
|||||||
@@ -44,7 +44,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
|||||||
names=np.array(["x[0]", "x[1]", "x[2]", "x[3]", "z"], dtype="S"),
|
names=np.array(["x[0]", "x[1]", "x[2]", "x[3]", "z"], dtype="S"),
|
||||||
lower_bounds=np.array([0.0, 0.0, 0.0, 0.0, 0.0]),
|
lower_bounds=np.array([0.0, 0.0, 0.0, 0.0, 0.0]),
|
||||||
upper_bounds=np.array([1.0, 1.0, 1.0, 1.0, 67.0]),
|
upper_bounds=np.array([1.0, 1.0, 1.0, 1.0, 67.0]),
|
||||||
types=["B", "B", "B", "B", "C"],
|
types=np.array(["B", "B", "B", "B", "C"], dtype="S"),
|
||||||
obj_coeffs=np.array([505.0, 352.0, 458.0, 220.0, 0.0]),
|
obj_coeffs=np.array([505.0, 352.0, 458.0, 220.0, 0.0]),
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
@@ -85,7 +85,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
|||||||
solver.get_variable_attrs(),
|
solver.get_variable_attrs(),
|
||||||
Variables(
|
Variables(
|
||||||
names=np.array(["x[0]", "x[1]", "x[2]", "x[3]", "z"], dtype="S"),
|
names=np.array(["x[0]", "x[1]", "x[2]", "x[3]", "z"], dtype="S"),
|
||||||
basis_status=["U", "B", "U", "L", "U"],
|
basis_status=np.array(["U", "B", "U", "L", "U"], dtype="S"),
|
||||||
reduced_costs=np.array(
|
reduced_costs=np.array(
|
||||||
[193.615385, 0.0, 187.230769, -23.692308, 13.538462]
|
[193.615385, 0.0, 187.230769, -23.692308, 13.538462]
|
||||||
),
|
),
|
||||||
|
|||||||
@@ -41,7 +41,10 @@ def test_knapsack() -> None:
|
|||||||
assert_equals(
|
assert_equals(
|
||||||
sample.get_vector("static_var_obj_coeffs"), [505.0, 352.0, 458.0, 220.0, 0.0]
|
sample.get_vector("static_var_obj_coeffs"), [505.0, 352.0, 458.0, 220.0, 0.0]
|
||||||
)
|
)
|
||||||
assert_equals(sample.get_vector("static_var_types"), ["B", "B", "B", "B", "C"])
|
assert_equals(
|
||||||
|
sample.get_array("static_var_types"),
|
||||||
|
np.array(["B", "B", "B", "B", "C"], dtype="S"),
|
||||||
|
)
|
||||||
assert_equals(
|
assert_equals(
|
||||||
sample.get_vector("static_var_upper_bounds"), [1.0, 1.0, 1.0, 1.0, 67.0]
|
sample.get_vector("static_var_upper_bounds"), [1.0, 1.0, 1.0, 1.0, 67.0]
|
||||||
)
|
)
|
||||||
@@ -76,8 +79,8 @@ def test_knapsack() -> None:
|
|||||||
solver.solve_lp()
|
solver.solve_lp()
|
||||||
extractor.extract_after_lp_features(solver, sample)
|
extractor.extract_after_lp_features(solver, sample)
|
||||||
assert_equals(
|
assert_equals(
|
||||||
sample.get_vector("lp_var_basis_status"),
|
sample.get_array("lp_var_basis_status"),
|
||||||
["U", "B", "U", "L", "U"],
|
np.array(["U", "B", "U", "L", "U"], dtype="S"),
|
||||||
)
|
)
|
||||||
assert_equals(
|
assert_equals(
|
||||||
sample.get_vector("lp_var_reduced_costs"),
|
sample.get_vector("lp_var_reduced_costs"),
|
||||||
|
|||||||
Reference in New Issue
Block a user