Use np.ndarray in instance features

This commit is contained in:
2021-08-09 10:01:58 -05:00
parent 63eff336e2
commit 47d3011808
4 changed files with 35 additions and 34 deletions

View File

@@ -3,8 +3,8 @@
# Released under the modified BSD license. See COPYING.md for more details.
import logging
import traceback
import time
import traceback
from typing import Optional, List, Any, cast, Dict, Tuple
from p_tqdm import p_map
@@ -15,7 +15,6 @@ from miplearn.components.dynamic_user_cuts import UserCutsComponent
from miplearn.components.objective import ObjectiveValueComponent
from miplearn.components.primal import PrimalSolutionComponent
from miplearn.features.extractor import FeaturesExtractor
from miplearn.features.sample import Sample, MemorySample
from miplearn.instance.base import Instance
from miplearn.instance.picklegz import PickleGzInstance
from miplearn.solvers import _RedirectOutput
@@ -208,9 +207,9 @@ class LearningSolver:
# -------------------------------------------------------
logger.info("Extracting features (after-lp)...")
initial_time = time.time()
for (k, v) in lp_stats.__dict__.items():
sample.put_scalar(k, v)
self.extractor.extract_after_lp_features(self.internal_solver, sample)
self.extractor.extract_after_lp_features(
self.internal_solver, sample, lp_stats
)
logger.info(
"Features (after-lp) extracted in %.2f seconds"
% (time.time() - initial_time)