mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Use np.ndarray in instance features
This commit is contained in:
@@ -3,8 +3,8 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
import traceback
|
||||
import time
|
||||
import traceback
|
||||
from typing import Optional, List, Any, cast, Dict, Tuple
|
||||
|
||||
from p_tqdm import p_map
|
||||
@@ -15,7 +15,6 @@ from miplearn.components.dynamic_user_cuts import UserCutsComponent
|
||||
from miplearn.components.objective import ObjectiveValueComponent
|
||||
from miplearn.components.primal import PrimalSolutionComponent
|
||||
from miplearn.features.extractor import FeaturesExtractor
|
||||
from miplearn.features.sample import Sample, MemorySample
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.instance.picklegz import PickleGzInstance
|
||||
from miplearn.solvers import _RedirectOutput
|
||||
@@ -208,9 +207,9 @@ class LearningSolver:
|
||||
# -------------------------------------------------------
|
||||
logger.info("Extracting features (after-lp)...")
|
||||
initial_time = time.time()
|
||||
for (k, v) in lp_stats.__dict__.items():
|
||||
sample.put_scalar(k, v)
|
||||
self.extractor.extract_after_lp_features(self.internal_solver, sample)
|
||||
self.extractor.extract_after_lp_features(
|
||||
self.internal_solver, sample, lp_stats
|
||||
)
|
||||
logger.info(
|
||||
"Features (after-lp) extracted in %.2f seconds"
|
||||
% (time.time() - initial_time)
|
||||
|
||||
Reference in New Issue
Block a user