Implement KnnWarmStartPredictor; make it the default method

This commit is contained in:
2020-01-23 12:32:40 -06:00
parent 35218d4893
commit 480da41fa9
3 changed files with 128 additions and 7 deletions

View File

@@ -8,10 +8,12 @@ from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import cross_val_score
from sklearn.neighbors import KNeighborsClassifier
class WarmStartPredictor(ABC):
def __init__(self):
def __init__(self, thr_clip=[0.50, 0.50]):
self.models = [None, None]
self.thr_clip = thr_clip
def fit(self, x_train, y_train):
assert isinstance(x_train, np.ndarray)
@@ -23,13 +25,16 @@ class WarmStartPredictor(ABC):
def predict(self, x_test):
assert isinstance(x_test, np.ndarray)
y_pred = np.zeros((x_test.shape[0], 2), dtype=np.int)
y_pred = np.zeros((x_test.shape[0], 2))
for i in [0,1]:
if isinstance(self.models[i], int):
y_pred[:, i] = self.models[i]
else:
y_pred[:, i] = self.models[i].predict(x_test)
return y_pred
y = self.models[i].predict_proba(x_test)[:,1]
y[y < self.thr_clip[i]] = 0.
y[y > 0.] = 1.
y_pred[:, i] = y
return y_pred.astype(int)
@abstractmethod
def _fit(self, x_train, y_train, label):
@@ -71,4 +76,32 @@ class LogisticWarmStartPredictor(WarmStartPredictor):
return 0
reg.fit(x_train, y_train.astype(int))
return reg
return reg
class KnnWarmStartPredictor(WarmStartPredictor):
def __init__(self, k=50,
thr_clip=[0.90, 0.90],
thr_fix=[0.99, 0.99]):
super().__init__(thr_clip=thr_clip)
self.k = k
self.thr_fix = thr_fix
def _fit(self, x_train, y_train, label):
y_train_avg = np.average(y_train)
# If number of training samples is too small, don't predict anything.
if x_train.shape[0] < self.k:
return 0
# If vast majority of observations are true, always return true.
if y_train_avg > self.thr_fix[label]:
return 1
# If vast majority of observations are false, always return false.
if y_train_avg < (1 - self.thr_fix[label]):
return 0
knn = KNeighborsClassifier(n_neighbors=self.k)
knn.fit(x_train, y_train)
return knn