mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Implement KnnWarmStartPredictor; make it the default method
This commit is contained in:
@@ -3,7 +3,7 @@
|
|||||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||||
|
|
||||||
from .transformers import PerVariableTransformer
|
from .transformers import PerVariableTransformer
|
||||||
from .warmstart import LogisticWarmStartPredictor
|
from .warmstart import KnnWarmStartPredictor
|
||||||
import pyomo.environ as pe
|
import pyomo.environ as pe
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
@@ -18,7 +18,7 @@ class LearningSolver:
|
|||||||
def __init__(self,
|
def __init__(self,
|
||||||
threads=4,
|
threads=4,
|
||||||
parent_solver=pe.SolverFactory('cbc'),
|
parent_solver=pe.SolverFactory('cbc'),
|
||||||
ws_predictor=LogisticWarmStartPredictor(),
|
ws_predictor=KnnWarmStartPredictor(),
|
||||||
mode="exact"):
|
mode="exact"):
|
||||||
self.parent_solver = parent_solver
|
self.parent_solver = parent_solver
|
||||||
self.parent_solver.options["threads"] = threads
|
self.parent_solver.options["threads"] = threads
|
||||||
|
|||||||
88
miplearn/tests/test_warmstart_knn.py
Normal file
88
miplearn/tests/test_warmstart_knn.py
Normal file
@@ -0,0 +1,88 @@
|
|||||||
|
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||||
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||||
|
|
||||||
|
from miplearn.warmstart import KnnWarmStartPredictor
|
||||||
|
from sklearn.metrics import accuracy_score, precision_score
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def test_knn_with_consensus():
|
||||||
|
x_train = np.array([
|
||||||
|
[0.0, 0.0],
|
||||||
|
[0.1, 0.0],
|
||||||
|
[0.0, 0.1],
|
||||||
|
[1.0, 1.0],
|
||||||
|
])
|
||||||
|
y_train = np.array([
|
||||||
|
[0., 1.],
|
||||||
|
[0., 1.],
|
||||||
|
[0., 1.],
|
||||||
|
[1., 0.],
|
||||||
|
])
|
||||||
|
ws = KnnWarmStartPredictor(k=3, thr_clip=[0.75, 0.75])
|
||||||
|
ws.fit(x_train, y_train)
|
||||||
|
|
||||||
|
x_test = np.array([[0.0, 0.0]])
|
||||||
|
y_test = np.array([[0, 1]])
|
||||||
|
assert (ws.predict(x_test) == y_test).all()
|
||||||
|
|
||||||
|
def test_knn_without_consensus():
|
||||||
|
x_train = np.array([
|
||||||
|
[0.0, 0.0],
|
||||||
|
[0.1, 0.1],
|
||||||
|
[0.9, 0.9],
|
||||||
|
[1.0, 1.0],
|
||||||
|
])
|
||||||
|
y_train = np.array([
|
||||||
|
[0., 1.],
|
||||||
|
[0., 1.],
|
||||||
|
[1., 0.],
|
||||||
|
[1., 0.],
|
||||||
|
])
|
||||||
|
ws = KnnWarmStartPredictor(k=4, thr_clip=[0.75, 0.75])
|
||||||
|
ws.fit(x_train, y_train)
|
||||||
|
|
||||||
|
x_test = np.array([[0.5, 0.5]])
|
||||||
|
y_test = np.array([[0, 0]])
|
||||||
|
assert (ws.predict(x_test) == y_test).all()
|
||||||
|
|
||||||
|
def test_knn_always_true():
|
||||||
|
x_train = np.array([
|
||||||
|
[0.0, 0.0],
|
||||||
|
[0.1, 0.1],
|
||||||
|
[0.9, 0.9],
|
||||||
|
[1.0, 1.0],
|
||||||
|
])
|
||||||
|
y_train = np.array([
|
||||||
|
[1., 0.],
|
||||||
|
[1., 0.],
|
||||||
|
[1., 0.],
|
||||||
|
[1., 0.],
|
||||||
|
])
|
||||||
|
ws = KnnWarmStartPredictor(k=4, thr_clip=[0.75, 0.75])
|
||||||
|
ws.fit(x_train, y_train)
|
||||||
|
|
||||||
|
x_test = np.array([[0.5, 0.5]])
|
||||||
|
y_test = np.array([[1, 0]])
|
||||||
|
assert (ws.predict(x_test) == y_test).all()
|
||||||
|
|
||||||
|
def test_knn_always_false():
|
||||||
|
x_train = np.array([
|
||||||
|
[0.0, 0.0],
|
||||||
|
[0.1, 0.1],
|
||||||
|
[0.9, 0.9],
|
||||||
|
[1.0, 1.0],
|
||||||
|
])
|
||||||
|
y_train = np.array([
|
||||||
|
[0., 1.],
|
||||||
|
[0., 1.],
|
||||||
|
[0., 1.],
|
||||||
|
[0., 1.],
|
||||||
|
])
|
||||||
|
ws = KnnWarmStartPredictor(k=4, thr_clip=[0.75, 0.75])
|
||||||
|
ws.fit(x_train, y_train)
|
||||||
|
|
||||||
|
x_test = np.array([[0.5, 0.5]])
|
||||||
|
y_test = np.array([[0, 1]])
|
||||||
|
assert (ws.predict(x_test) == y_test).all()
|
||||||
@@ -8,10 +8,12 @@ from sklearn.pipeline import make_pipeline
|
|||||||
from sklearn.linear_model import LogisticRegression
|
from sklearn.linear_model import LogisticRegression
|
||||||
from sklearn.preprocessing import StandardScaler
|
from sklearn.preprocessing import StandardScaler
|
||||||
from sklearn.model_selection import cross_val_score
|
from sklearn.model_selection import cross_val_score
|
||||||
|
from sklearn.neighbors import KNeighborsClassifier
|
||||||
|
|
||||||
class WarmStartPredictor(ABC):
|
class WarmStartPredictor(ABC):
|
||||||
def __init__(self):
|
def __init__(self, thr_clip=[0.50, 0.50]):
|
||||||
self.models = [None, None]
|
self.models = [None, None]
|
||||||
|
self.thr_clip = thr_clip
|
||||||
|
|
||||||
def fit(self, x_train, y_train):
|
def fit(self, x_train, y_train):
|
||||||
assert isinstance(x_train, np.ndarray)
|
assert isinstance(x_train, np.ndarray)
|
||||||
@@ -23,13 +25,16 @@ class WarmStartPredictor(ABC):
|
|||||||
|
|
||||||
def predict(self, x_test):
|
def predict(self, x_test):
|
||||||
assert isinstance(x_test, np.ndarray)
|
assert isinstance(x_test, np.ndarray)
|
||||||
y_pred = np.zeros((x_test.shape[0], 2), dtype=np.int)
|
y_pred = np.zeros((x_test.shape[0], 2))
|
||||||
for i in [0,1]:
|
for i in [0,1]:
|
||||||
if isinstance(self.models[i], int):
|
if isinstance(self.models[i], int):
|
||||||
y_pred[:, i] = self.models[i]
|
y_pred[:, i] = self.models[i]
|
||||||
else:
|
else:
|
||||||
y_pred[:, i] = self.models[i].predict(x_test)
|
y = self.models[i].predict_proba(x_test)[:,1]
|
||||||
return y_pred
|
y[y < self.thr_clip[i]] = 0.
|
||||||
|
y[y > 0.] = 1.
|
||||||
|
y_pred[:, i] = y
|
||||||
|
return y_pred.astype(int)
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def _fit(self, x_train, y_train, label):
|
def _fit(self, x_train, y_train, label):
|
||||||
@@ -72,3 +77,31 @@ class LogisticWarmStartPredictor(WarmStartPredictor):
|
|||||||
|
|
||||||
reg.fit(x_train, y_train.astype(int))
|
reg.fit(x_train, y_train.astype(int))
|
||||||
return reg
|
return reg
|
||||||
|
|
||||||
|
|
||||||
|
class KnnWarmStartPredictor(WarmStartPredictor):
|
||||||
|
def __init__(self, k=50,
|
||||||
|
thr_clip=[0.90, 0.90],
|
||||||
|
thr_fix=[0.99, 0.99]):
|
||||||
|
super().__init__(thr_clip=thr_clip)
|
||||||
|
self.k = k
|
||||||
|
self.thr_fix = thr_fix
|
||||||
|
|
||||||
|
def _fit(self, x_train, y_train, label):
|
||||||
|
y_train_avg = np.average(y_train)
|
||||||
|
|
||||||
|
# If number of training samples is too small, don't predict anything.
|
||||||
|
if x_train.shape[0] < self.k:
|
||||||
|
return 0
|
||||||
|
|
||||||
|
# If vast majority of observations are true, always return true.
|
||||||
|
if y_train_avg > self.thr_fix[label]:
|
||||||
|
return 1
|
||||||
|
|
||||||
|
# If vast majority of observations are false, always return false.
|
||||||
|
if y_train_avg < (1 - self.thr_fix[label]):
|
||||||
|
return 0
|
||||||
|
|
||||||
|
knn = KNeighborsClassifier(n_neighbors=self.k)
|
||||||
|
knn.fit(x_train, y_train)
|
||||||
|
return knn
|
||||||
Reference in New Issue
Block a user