Fix tests on Python 3.7

master
Alinson S. Xavier 5 years ago
parent edd0c8d750
commit 4d4e2a3eef

@ -175,14 +175,14 @@ def test_x_y_fit() -> None:
# Should build and train classifier for "default" category
classifier_factory.assert_called_once()
assert_array_equal(x_actual["default"], classifier.fit.call_args.args[0])
assert_array_equal(y_actual["default"], classifier.fit.call_args.args[1])
assert_array_equal(x_actual["default"], classifier.fit.call_args[0][0])
assert_array_equal(y_actual["default"], classifier.fit.call_args[0][1])
# Should build and train threshold for "default" category
threshold_factory.assert_called_once()
assert classifier == threshold.fit.call_args.args[0]
assert_array_equal(x_actual["default"], threshold.fit.call_args.args[1])
assert_array_equal(y_actual["default"], threshold.fit.call_args.args[2])
assert classifier == threshold.fit.call_args[0][0]
assert_array_equal(x_actual["default"], threshold.fit.call_args[0][1])
assert_array_equal(y_actual["default"], threshold.fit.call_args[0][2])
def test_predict() -> None:
@ -233,8 +233,8 @@ def test_predict() -> None:
# Should ask for probabilities and thresholds
clf.predict_proba.assert_called_once()
thr.predict.assert_called_once()
assert_array_equal(x["default"], clf.predict_proba.call_args.args[0])
assert_array_equal(x["default"], thr.predict.call_args.args[0])
assert_array_equal(x["default"], clf.predict_proba.call_args[0][0])
assert_array_equal(x["default"], thr.predict.call_args[0][0])
assert solution_actual == {
"x": {

Loading…
Cancel
Save