AdaptiveClassifier: Refactor and add tests

This commit is contained in:
2021-01-25 08:59:06 -06:00
parent 8dba65dd9c
commit 4da561a6a8
6 changed files with 149 additions and 89 deletions

View File

@@ -1,3 +1,39 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from typing import Tuple
import numpy as np
from sklearn.preprocessing import StandardScaler
def _build_circle_training_data() -> Tuple[np.ndarray, np.ndarray]:
x_train = StandardScaler().fit_transform(
np.array(
[
[
x1,
x2,
]
for x1 in range(-10, 11)
for x2 in range(-10, 11)
]
)
)
y_train = np.array(
[
[
False,
True,
]
if x1 * x1 + x2 * x2 <= 100
else [
True,
False,
]
for x1 in range(-10, 11)
for x2 in range(-10, 11)
]
)
return x_train, y_train

View File

@@ -0,0 +1,41 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from typing import cast
from numpy.linalg import norm
from sklearn.svm import SVC
from miplearn import AdaptiveClassifier, ScikitLearnClassifier
from miplearn.classifiers.adaptive import CandidateClassifierSpecs
from tests.classifiers import _build_circle_training_data
def test_adaptive() -> None:
clf = AdaptiveClassifier(
candidates={
"linear": CandidateClassifierSpecs(
classifier=lambda: ScikitLearnClassifier(
SVC(
probability=True,
random_state=42,
)
)
),
"poly": CandidateClassifierSpecs(
classifier=lambda: ScikitLearnClassifier(
SVC(
probability=True,
kernel="poly",
degree=2,
random_state=42,
)
)
),
}
)
x_train, y_train = _build_circle_training_data()
clf.fit(x_train, y_train)
proba = clf.predict_proba(x_train)
y_pred = (proba[:, 1] > 0.5).astype(float)
assert norm(y_train[:, 1] - y_pred) < 0.1

View File

@@ -4,44 +4,18 @@
import numpy as np
from numpy.linalg import norm
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from miplearn.classifiers import ScikitLearnClassifier
from miplearn.classifiers.cv import CrossValidatedClassifier
from tests.classifiers import _build_circle_training_data
E = 0.1
def test_cv() -> None:
# Training set: label is true if point is inside a 2D circle
x_train = np.array(
[
[
x1,
x2,
]
for x1 in range(-10, 11)
for x2 in range(-10, 11)
]
)
x_train = StandardScaler().fit_transform(x_train)
x_train, y_train = _build_circle_training_data()
n_samples = x_train.shape[0]
y_train = np.array(
[
[
False,
True,
]
if x1 * x1 + x2 * x2 <= 100
else [
True,
False,
]
for x1 in range(-10, 11)
for x2 in range(-10, 11)
]
)
# Support vector machines with linear kernels do not perform well on this
# data set, so predictor should return the given constant.

View File

@@ -1,20 +0,0 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from miplearn.classifiers.evaluator import ClassifierEvaluator
def test_evaluator():
clf_a = KNeighborsClassifier(n_neighbors=1)
clf_b = KNeighborsClassifier(n_neighbors=2)
x_train = np.array([[0, 0], [1, 0]])
y_train = np.array([0, 1])
clf_a.fit(x_train, y_train)
clf_b.fit(x_train, y_train)
ev = ClassifierEvaluator()
assert ev.evaluate(clf_a, x_train, y_train) == 1.0
assert ev.evaluate(clf_b, x_train, y_train) == 0.5