AdaptiveClassifier: Refactor and add tests

This commit is contained in:
2021-01-25 08:59:06 -06:00
parent 8dba65dd9c
commit 4da561a6a8
6 changed files with 149 additions and 89 deletions

View File

@@ -0,0 +1,41 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from typing import cast
from numpy.linalg import norm
from sklearn.svm import SVC
from miplearn import AdaptiveClassifier, ScikitLearnClassifier
from miplearn.classifiers.adaptive import CandidateClassifierSpecs
from tests.classifiers import _build_circle_training_data
def test_adaptive() -> None:
clf = AdaptiveClassifier(
candidates={
"linear": CandidateClassifierSpecs(
classifier=lambda: ScikitLearnClassifier(
SVC(
probability=True,
random_state=42,
)
)
),
"poly": CandidateClassifierSpecs(
classifier=lambda: ScikitLearnClassifier(
SVC(
probability=True,
kernel="poly",
degree=2,
random_state=42,
)
)
),
}
)
x_train, y_train = _build_circle_training_data()
clf.fit(x_train, y_train)
proba = clf.predict_proba(x_train)
y_pred = (proba[:, 1] > 0.5).astype(float)
assert norm(y_train[:, 1] - y_pred) < 0.1