mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
AdaptiveClassifier: Refactor and add tests
This commit is contained in:
@@ -4,63 +4,107 @@
|
|||||||
|
|
||||||
import logging
|
import logging
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from typing import Any, Dict
|
from typing import Dict, Callable, Optional
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
from sklearn.linear_model import LogisticRegression
|
from sklearn.linear_model import LogisticRegression
|
||||||
|
from sklearn.metrics import roc_auc_score
|
||||||
from sklearn.neighbors import KNeighborsClassifier
|
from sklearn.neighbors import KNeighborsClassifier
|
||||||
from sklearn.pipeline import make_pipeline
|
from sklearn.pipeline import make_pipeline
|
||||||
from sklearn.preprocessing import StandardScaler
|
from sklearn.preprocessing import StandardScaler
|
||||||
|
|
||||||
from miplearn.classifiers import Classifier
|
from miplearn.classifiers import Classifier, ScikitLearnClassifier
|
||||||
from miplearn.classifiers.counting import CountingClassifier
|
from miplearn.classifiers.counting import CountingClassifier
|
||||||
from miplearn.classifiers.evaluator import ClassifierEvaluator
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class CandidateClassifierSpecs:
|
||||||
|
"""
|
||||||
|
Specifications describing how to construct a certain classifier, and under
|
||||||
|
which circumstances it can be used.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
min_samples: int
|
||||||
|
Minimum number of samples for this classifier to be considered.
|
||||||
|
classifier: Callable[[], Classifier]
|
||||||
|
Callable that constructs the classifier.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
classifier: Callable[[], Classifier],
|
||||||
|
min_samples: int = 0,
|
||||||
|
) -> None:
|
||||||
|
self.min_samples = min_samples
|
||||||
|
self.classifier = classifier
|
||||||
|
|
||||||
|
|
||||||
class AdaptiveClassifier(Classifier):
|
class AdaptiveClassifier(Classifier):
|
||||||
"""
|
"""
|
||||||
A meta-classifier which dynamically selects what actual classifier to use
|
A meta-classifier which dynamically selects what actual classifier to use
|
||||||
based on its cross-validation score on a particular training data set.
|
based on its cross-validation score on a particular training data set.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
candidates: Dict[str, CandidateClassifierSpecs]
|
||||||
|
A dictionary of candidate classifiers to consider, mapping the name of the
|
||||||
|
candidate to its specs, which describes how to construct it and under what
|
||||||
|
scenarios. If no candidates are provided, uses a fixed set of defaults,
|
||||||
|
which includes `CountingClassifier`, `KNeighborsClassifier` and
|
||||||
|
`LogisticRegression`.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
candidates: Dict[str, Any] = None,
|
candidates: Dict[str, CandidateClassifierSpecs] = None,
|
||||||
evaluator: ClassifierEvaluator = ClassifierEvaluator(),
|
|
||||||
) -> None:
|
) -> None:
|
||||||
|
super().__init__()
|
||||||
if candidates is None:
|
if candidates is None:
|
||||||
candidates = {
|
candidates = {
|
||||||
"knn(100)": {
|
"knn(100)": CandidateClassifierSpecs(
|
||||||
"classifier": KNeighborsClassifier(n_neighbors=100),
|
classifier=lambda: ScikitLearnClassifier(
|
||||||
"min samples": 100,
|
KNeighborsClassifier(n_neighbors=100)
|
||||||
},
|
),
|
||||||
"logistic": {
|
min_samples=100,
|
||||||
"classifier": make_pipeline(StandardScaler(), LogisticRegression()),
|
),
|
||||||
"min samples": 30,
|
"logistic": CandidateClassifierSpecs(
|
||||||
},
|
classifier=lambda: ScikitLearnClassifier(
|
||||||
"counting": {
|
make_pipeline(
|
||||||
"classifier": CountingClassifier(),
|
StandardScaler(),
|
||||||
"min samples": 0,
|
LogisticRegression(),
|
||||||
},
|
)
|
||||||
|
),
|
||||||
|
min_samples=30,
|
||||||
|
),
|
||||||
|
"counting": CandidateClassifierSpecs(
|
||||||
|
classifier=lambda: CountingClassifier(),
|
||||||
|
),
|
||||||
}
|
}
|
||||||
self.candidates = candidates
|
self.candidates = candidates
|
||||||
self.evaluator = evaluator
|
self.classifier: Optional[Classifier] = None
|
||||||
self.classifier = None
|
|
||||||
|
|
||||||
def fit(self, x_train, y_train):
|
def fit(self, x_train: np.ndarray, y_train: np.ndarray) -> None:
|
||||||
best_name, best_clf, best_score = None, None, -float("inf")
|
super().fit(x_train, y_train)
|
||||||
n_samples = x_train.shape[0]
|
n_samples = x_train.shape[0]
|
||||||
for (name, clf_dict) in self.candidates.items():
|
assert y_train.shape == (n_samples, 2)
|
||||||
if n_samples < clf_dict["min samples"]:
|
|
||||||
|
best_name, best_clf, best_score = None, None, -float("inf")
|
||||||
|
for (name, specs) in self.candidates.items():
|
||||||
|
if n_samples < specs.min_samples:
|
||||||
continue
|
continue
|
||||||
clf = deepcopy(clf_dict["classifier"])
|
clf = specs.classifier()
|
||||||
clf.fit(x_train, y_train)
|
clf.fit(x_train, y_train)
|
||||||
score = self.evaluator.evaluate(clf, x_train, y_train)
|
proba = clf.predict_proba(x_train)
|
||||||
|
# FIXME: Switch to k-fold cross validation
|
||||||
|
score = roc_auc_score(y_train[:, 1], proba[:, 1])
|
||||||
if score > best_score:
|
if score > best_score:
|
||||||
best_name, best_clf, best_score = name, clf, score
|
best_name, best_clf, best_score = name, clf, score
|
||||||
logger.debug("Best classifier: %s (score=%.3f)" % (best_name, best_score))
|
logger.debug("Best classifier: %s (score=%.3f)" % (best_name, best_score))
|
||||||
self.classifier = best_clf
|
self.classifier = best_clf
|
||||||
|
|
||||||
def predict_proba(self, x_test):
|
def predict_proba(self, x_test: np.ndarray) -> np.ndarray:
|
||||||
|
super().predict_proba(x_test)
|
||||||
|
assert self.classifier is not None
|
||||||
return self.classifier.predict_proba(x_test)
|
return self.classifier.predict_proba(x_test)
|
||||||
|
|||||||
@@ -1,15 +0,0 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
|
||||||
|
|
||||||
from sklearn.metrics import roc_auc_score
|
|
||||||
|
|
||||||
|
|
||||||
class ClassifierEvaluator:
|
|
||||||
def __init__(self) -> None:
|
|
||||||
pass
|
|
||||||
|
|
||||||
def evaluate(self, clf, x_train, y_train):
|
|
||||||
# FIXME: use cross-validation
|
|
||||||
proba = clf.predict_proba(x_train)
|
|
||||||
return roc_auc_score(y_train, proba[:, 1])
|
|
||||||
@@ -1,3 +1,39 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.preprocessing import StandardScaler
|
||||||
|
|
||||||
|
|
||||||
|
def _build_circle_training_data() -> Tuple[np.ndarray, np.ndarray]:
|
||||||
|
x_train = StandardScaler().fit_transform(
|
||||||
|
np.array(
|
||||||
|
[
|
||||||
|
[
|
||||||
|
x1,
|
||||||
|
x2,
|
||||||
|
]
|
||||||
|
for x1 in range(-10, 11)
|
||||||
|
for x2 in range(-10, 11)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
)
|
||||||
|
y_train = np.array(
|
||||||
|
[
|
||||||
|
[
|
||||||
|
False,
|
||||||
|
True,
|
||||||
|
]
|
||||||
|
if x1 * x1 + x2 * x2 <= 100
|
||||||
|
else [
|
||||||
|
True,
|
||||||
|
False,
|
||||||
|
]
|
||||||
|
for x1 in range(-10, 11)
|
||||||
|
for x2 in range(-10, 11)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
return x_train, y_train
|
||||||
|
|||||||
41
tests/classifiers/test_adaptive.py
Normal file
41
tests/classifiers/test_adaptive.py
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
from typing import cast
|
||||||
|
|
||||||
|
from numpy.linalg import norm
|
||||||
|
from sklearn.svm import SVC
|
||||||
|
|
||||||
|
from miplearn import AdaptiveClassifier, ScikitLearnClassifier
|
||||||
|
from miplearn.classifiers.adaptive import CandidateClassifierSpecs
|
||||||
|
from tests.classifiers import _build_circle_training_data
|
||||||
|
|
||||||
|
|
||||||
|
def test_adaptive() -> None:
|
||||||
|
clf = AdaptiveClassifier(
|
||||||
|
candidates={
|
||||||
|
"linear": CandidateClassifierSpecs(
|
||||||
|
classifier=lambda: ScikitLearnClassifier(
|
||||||
|
SVC(
|
||||||
|
probability=True,
|
||||||
|
random_state=42,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
),
|
||||||
|
"poly": CandidateClassifierSpecs(
|
||||||
|
classifier=lambda: ScikitLearnClassifier(
|
||||||
|
SVC(
|
||||||
|
probability=True,
|
||||||
|
kernel="poly",
|
||||||
|
degree=2,
|
||||||
|
random_state=42,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
x_train, y_train = _build_circle_training_data()
|
||||||
|
clf.fit(x_train, y_train)
|
||||||
|
proba = clf.predict_proba(x_train)
|
||||||
|
y_pred = (proba[:, 1] > 0.5).astype(float)
|
||||||
|
assert norm(y_train[:, 1] - y_pred) < 0.1
|
||||||
@@ -4,44 +4,18 @@
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from numpy.linalg import norm
|
from numpy.linalg import norm
|
||||||
from sklearn.preprocessing import StandardScaler
|
|
||||||
from sklearn.svm import SVC
|
from sklearn.svm import SVC
|
||||||
|
|
||||||
from miplearn.classifiers import ScikitLearnClassifier
|
from miplearn.classifiers import ScikitLearnClassifier
|
||||||
from miplearn.classifiers.cv import CrossValidatedClassifier
|
from miplearn.classifiers.cv import CrossValidatedClassifier
|
||||||
|
from tests.classifiers import _build_circle_training_data
|
||||||
|
|
||||||
E = 0.1
|
E = 0.1
|
||||||
|
|
||||||
|
|
||||||
def test_cv() -> None:
|
def test_cv() -> None:
|
||||||
# Training set: label is true if point is inside a 2D circle
|
x_train, y_train = _build_circle_training_data()
|
||||||
x_train = np.array(
|
|
||||||
[
|
|
||||||
[
|
|
||||||
x1,
|
|
||||||
x2,
|
|
||||||
]
|
|
||||||
for x1 in range(-10, 11)
|
|
||||||
for x2 in range(-10, 11)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
x_train = StandardScaler().fit_transform(x_train)
|
|
||||||
n_samples = x_train.shape[0]
|
n_samples = x_train.shape[0]
|
||||||
y_train = np.array(
|
|
||||||
[
|
|
||||||
[
|
|
||||||
False,
|
|
||||||
True,
|
|
||||||
]
|
|
||||||
if x1 * x1 + x2 * x2 <= 100
|
|
||||||
else [
|
|
||||||
True,
|
|
||||||
False,
|
|
||||||
]
|
|
||||||
for x1 in range(-10, 11)
|
|
||||||
for x2 in range(-10, 11)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
# Support vector machines with linear kernels do not perform well on this
|
# Support vector machines with linear kernels do not perform well on this
|
||||||
# data set, so predictor should return the given constant.
|
# data set, so predictor should return the given constant.
|
||||||
|
|||||||
@@ -1,20 +0,0 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from sklearn.neighbors import KNeighborsClassifier
|
|
||||||
|
|
||||||
from miplearn.classifiers.evaluator import ClassifierEvaluator
|
|
||||||
|
|
||||||
|
|
||||||
def test_evaluator():
|
|
||||||
clf_a = KNeighborsClassifier(n_neighbors=1)
|
|
||||||
clf_b = KNeighborsClassifier(n_neighbors=2)
|
|
||||||
x_train = np.array([[0, 0], [1, 0]])
|
|
||||||
y_train = np.array([0, 1])
|
|
||||||
clf_a.fit(x_train, y_train)
|
|
||||||
clf_b.fit(x_train, y_train)
|
|
||||||
ev = ClassifierEvaluator()
|
|
||||||
assert ev.evaluate(clf_a, x_train, y_train) == 1.0
|
|
||||||
assert ev.evaluate(clf_b, x_train, y_train) == 0.5
|
|
||||||
Reference in New Issue
Block a user