Add some InternalSolver tests to main package

master
Alinson S. Xavier 5 years ago
parent 3edc8139e9
commit 5116681291

@ -0,0 +1,81 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from miplearn.solvers.internal import InternalSolver
from miplearn.instance.base import Instance
from typing import Any
def assert_equals(left: Any, right: Any) -> None:
assert left == right, f"{left} != {right}"
def test_internal_solver(
solver: InternalSolver,
instance: Instance,
model: Any,
) -> None:
solver.set_instance(instance, model)
assert_equals(
solver.get_variable_names(),
["x[0]", "x[1]", "x[2]", "x[3]"],
)
lp_stats = solver.solve_lp()
assert not solver.is_infeasible()
assert lp_stats["LP value"] is not None
assert_equals(round(lp_stats["LP value"], 3), 1287.923)
assert len(lp_stats["LP log"]) > 100
solution = solver.get_solution()
assert solution is not None
assert solution["x[0]"] is not None
assert solution["x[1]"] is not None
assert solution["x[2]"] is not None
assert solution["x[3]"] is not None
assert_equals(round(solution["x[0]"], 3), 1.000)
assert_equals(round(solution["x[1]"], 3), 0.923)
assert_equals(round(solution["x[2]"], 3), 1.000)
assert_equals(round(solution["x[3]"], 3), 0.000)
mip_stats = solver.solve(
tee=True,
iteration_cb=None,
lazy_cb=None,
user_cut_cb=None,
)
assert not solver.is_infeasible()
assert len(mip_stats["MIP log"]) > 100
assert_equals(mip_stats["Lower bound"], 1183.0)
assert_equals(mip_stats["Upper bound"], 1183.0)
assert_equals(mip_stats["Sense"], "max")
assert isinstance(mip_stats["Wallclock time"], float)
solution = solver.get_solution()
assert solution is not None
assert solution["x[0]"] is not None
assert solution["x[1]"] is not None
assert solution["x[2]"] is not None
assert solution["x[3]"] is not None
assert_equals(solution["x[0]"], 1.0)
assert_equals(solution["x[1]"], 0.0)
assert_equals(solution["x[2]"], 1.0)
assert_equals(solution["x[3]"], 1.0)
assert_equals(solver.get_constraint_ids(), ["eq_capacity"])
assert_equals(
solver.get_constraint_rhs("eq_capacity"),
67.0,
)
assert_equals(
solver.get_constraint_lhs("eq_capacity"),
{
"x[0]": 23.0,
"x[1]": 26.0,
"x[2]": 20.0,
"x[3]": 18.0,
},
)
assert_equals(solver.get_constraint_sense("eq_capacity"), "<")
Loading…
Cancel
Save