|
|
|
@ -3,17 +3,39 @@
|
|
|
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
|
|
|
|
|
|
using JuMP
|
|
|
|
|
using CPLEX
|
|
|
|
|
using MathOptInterface
|
|
|
|
|
const MOI = MathOptInterface
|
|
|
|
|
using TimerOutputs
|
|
|
|
|
|
|
|
|
|
mutable struct JuMPSolverData
|
|
|
|
|
basename_idx_to_var
|
|
|
|
|
var_to_basename_idx
|
|
|
|
|
optimizer
|
|
|
|
|
instance
|
|
|
|
|
model
|
|
|
|
|
bin_vars
|
|
|
|
|
solution
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function varname_split(varname::String)
|
|
|
|
|
m = match(r"([^[]*)\[(.*)\]", varname)
|
|
|
|
|
if m == nothing
|
|
|
|
|
return varname, ""
|
|
|
|
|
end
|
|
|
|
|
return m.captures[1], m.captures[2]
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
@pydef mutable struct JuMPSolver <: InternalSolver
|
|
|
|
|
function __init__(self; optimizer=CPLEX.Optimizer)
|
|
|
|
|
self.optimizer = optimizer
|
|
|
|
|
function __init__(self; optimizer=nothing)
|
|
|
|
|
self.data = JuMPSolverData(nothing, # basename_idx_to_var
|
|
|
|
|
nothing, # var_to_basename_idx
|
|
|
|
|
optimizer,
|
|
|
|
|
nothing, # instance
|
|
|
|
|
nothing, # model
|
|
|
|
|
nothing, # bin_vars
|
|
|
|
|
nothing, # solution
|
|
|
|
|
)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function add_constraint(self, constraint)
|
|
|
|
@ -21,10 +43,11 @@ end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function set_warm_start(self, solution)
|
|
|
|
|
basename_idx_to_var = self.data.basename_idx_to_var
|
|
|
|
|
for (basename, subsolution) in solution
|
|
|
|
|
for (idx, value) in subsolution
|
|
|
|
|
value != nothing || continue
|
|
|
|
|
var = self.basename_idx_to_var[basename, idx]
|
|
|
|
|
var = basename_idx_to_var[basename, idx]
|
|
|
|
|
JuMP.set_start_value(var, value)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
@ -35,36 +58,65 @@ end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function fix(self, solution)
|
|
|
|
|
@timeit "fix" begin
|
|
|
|
|
basename_idx_to_var = self.data.basename_idx_to_var
|
|
|
|
|
for (basename, subsolution) in solution
|
|
|
|
|
for (idx, value) in subsolution
|
|
|
|
|
value != nothing || continue
|
|
|
|
|
var = self.basename_idx_to_var[basename, idx]
|
|
|
|
|
var = basename_idx_to_var[basename, idx]
|
|
|
|
|
JuMP.fix(var, value, force=true)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function set_instance(self, instance, model)
|
|
|
|
|
self.instance = instance
|
|
|
|
|
self.model = model
|
|
|
|
|
self.var_to_basename_idx = Dict(var => varname_split(JuMP.name(var))
|
|
|
|
|
for var in JuMP.all_variables(self.model))
|
|
|
|
|
self.basename_idx_to_var = Dict(varname_split(JuMP.name(var)) => var
|
|
|
|
|
for var in JuMP.all_variables(self.model))
|
|
|
|
|
self.bin_vars = [var
|
|
|
|
|
for var in JuMP.all_variables(self.model)
|
|
|
|
|
@timeit "set_instance" begin
|
|
|
|
|
self.data.instance = instance
|
|
|
|
|
self.data.model = model
|
|
|
|
|
self.data.var_to_basename_idx = Dict(var => varname_split(JuMP.name(var))
|
|
|
|
|
for var in JuMP.all_variables(model))
|
|
|
|
|
self.data.basename_idx_to_var = Dict(varname_split(JuMP.name(var)) => var
|
|
|
|
|
for var in JuMP.all_variables(model))
|
|
|
|
|
self.data.bin_vars = [var
|
|
|
|
|
for var in JuMP.all_variables(model)
|
|
|
|
|
if JuMP.is_binary(var)]
|
|
|
|
|
JuMP.set_optimizer(self.model, self.optimizer)
|
|
|
|
|
if self.data.optimizer != nothing
|
|
|
|
|
JuMP.set_optimizer(model, self.data.optimizer)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function solve(self; tee=false)
|
|
|
|
|
JuMP.optimize!(self.model)
|
|
|
|
|
self._update_solution()
|
|
|
|
|
@timeit "solve" begin
|
|
|
|
|
instance, model = self.data.instance, self.data.model
|
|
|
|
|
wallclock_time = 0
|
|
|
|
|
found_violations = []
|
|
|
|
|
|
|
|
|
|
primal_bound = JuMP.objective_value(self.model)
|
|
|
|
|
dual_bound = JuMP.objective_bound(self.model)
|
|
|
|
|
|
|
|
|
|
if JuMP.objective_sense(self.model) == MOI.MIN_SENSE
|
|
|
|
|
while true
|
|
|
|
|
@timeit "optimize!" begin
|
|
|
|
|
JuMP.optimize!(model)
|
|
|
|
|
end
|
|
|
|
|
wallclock_time += JuMP.solve_time(model)
|
|
|
|
|
@timeit "find_violations" begin
|
|
|
|
|
violations = instance.find_violations(model)
|
|
|
|
|
end
|
|
|
|
|
@info "$(length(violations)) violations found"
|
|
|
|
|
if length(violations) == 0
|
|
|
|
|
break
|
|
|
|
|
end
|
|
|
|
|
append!(found_violations, violations)
|
|
|
|
|
for v in violations
|
|
|
|
|
instance.build_lazy_constraint(self.data.model, v)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
@timeit "update solution" begin
|
|
|
|
|
self._update_solution()
|
|
|
|
|
self.data.instance.found_violations = found_violations
|
|
|
|
|
end
|
|
|
|
|
primal_bound = JuMP.objective_value(model)
|
|
|
|
|
dual_bound = JuMP.objective_bound(model)
|
|
|
|
|
if JuMP.objective_sense(model) == MOI.MIN_SENSE
|
|
|
|
|
sense = "min"
|
|
|
|
|
lower_bound = dual_bound
|
|
|
|
|
upper_bound = primal_bound
|
|
|
|
@ -73,50 +125,59 @@ end
|
|
|
|
|
lower_bound = primal_bound
|
|
|
|
|
upper_bound = dual_bound
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
@show primal_bound, dual_bound
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
return Dict("Lower bound" => lower_bound,
|
|
|
|
|
"Upper bound" => upper_bound,
|
|
|
|
|
"Sense" => sense,
|
|
|
|
|
"Wallclock time" => JuMP.solve_time(self.model),
|
|
|
|
|
"Wallclock time" => wallclock_time,
|
|
|
|
|
"Nodes" => 1,
|
|
|
|
|
"Log" => nothing,
|
|
|
|
|
"Warm start value" => nothing)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function solve_lp(self; tee=false)
|
|
|
|
|
for var in self.bin_vars
|
|
|
|
|
@timeit "solve_lp" begin
|
|
|
|
|
model = self.data.model
|
|
|
|
|
bin_vars = self.data.bin_vars
|
|
|
|
|
@timeit "unset_binary" begin
|
|
|
|
|
for var in bin_vars
|
|
|
|
|
JuMP.unset_binary(var)
|
|
|
|
|
JuMP.set_upper_bound(var, 1.0)
|
|
|
|
|
JuMP.set_lower_bound(var, 0.0)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
JuMP.optimize!(self.model)
|
|
|
|
|
obj_value = JuMP.objective_value(self.model)
|
|
|
|
|
end
|
|
|
|
|
@timeit "optimize" begin
|
|
|
|
|
JuMP.optimize!(model)
|
|
|
|
|
end
|
|
|
|
|
@timeit "update solution" begin
|
|
|
|
|
self._update_solution()
|
|
|
|
|
|
|
|
|
|
for var in self.bin_vars
|
|
|
|
|
end
|
|
|
|
|
obj_value = JuMP.objective_value(model)
|
|
|
|
|
@timeit "set_binary" begin
|
|
|
|
|
for var in bin_vars
|
|
|
|
|
JuMP.set_binary(var)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
return Dict("Optimal value" => obj_value)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function get_solution(self)
|
|
|
|
|
return self.solution
|
|
|
|
|
return self.data.solution
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function _update_solution(self)
|
|
|
|
|
var_to_basename_idx, model = self.data.var_to_basename_idx, self.data.model
|
|
|
|
|
solution = Dict()
|
|
|
|
|
for var in JuMP.all_variables(self.model)
|
|
|
|
|
basename, idx = self.var_to_basename_idx[var]
|
|
|
|
|
for var in JuMP.all_variables(model)
|
|
|
|
|
var in keys(var_to_basename_idx) || continue
|
|
|
|
|
basename, idx = var_to_basename_idx[var]
|
|
|
|
|
if !haskey(solution, basename)
|
|
|
|
|
solution[basename] = Dict()
|
|
|
|
|
end
|
|
|
|
|
solution[basename][idx] = JuMP.value(var)
|
|
|
|
|
end
|
|
|
|
|
self.solution = solution
|
|
|
|
|
self.data.solution = solution
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function set_gap_tolerance(self, gap_tolerance)
|
|
|
|
@ -136,6 +197,6 @@ end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function set_time_limit(self, time_limit)
|
|
|
|
|
JuMP.set_time_limit_sec(self.model, time_limit)
|
|
|
|
|
JuMP.set_time_limit_sec(self.data.model, time_limit)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|