Move python files to root folder; remove built docs

This commit is contained in:
2020-08-29 11:42:02 -05:00
parent 741af8506b
commit 5663ced0be
116 changed files with 8 additions and 12408 deletions

View File

@@ -0,0 +1,3 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.

View File

@@ -0,0 +1,18 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from miplearn.classifiers.counting import CountingClassifier
import numpy as np
from numpy.linalg import norm
E = 0.1
def test_counting():
clf = CountingClassifier()
clf.fit(np.zeros((8, 25)), [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0])
expected_proba = np.array([[0.375, 0.625],
[0.375, 0.625]])
actual_proba = clf.predict_proba(np.zeros((2, 25)))
assert norm(actual_proba - expected_proba) < E

View File

@@ -0,0 +1,46 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import numpy as np
from miplearn.classifiers.cv import CrossValidatedClassifier
from numpy.linalg import norm
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
E = 0.1
def test_cv():
# Training set: label is true if point is inside a 2D circle
x_train = np.array([[x1, x2]
for x1 in range(-10, 11)
for x2 in range(-10, 11)])
x_train = StandardScaler().fit_transform(x_train)
n_samples = x_train.shape[0]
y_train = np.array([1.0 if x1*x1 + x2*x2 <= 100 else 0.0
for x1 in range(-10, 11)
for x2 in range(-10, 11)])
# Support vector machines with linear kernels do not perform well on this
# data set, so predictor should return the given constant.
clf = CrossValidatedClassifier(classifier=SVC(probability=True,
random_state=42),
threshold=0.90,
constant=0.0,
cv=30)
clf.fit(x_train, y_train)
assert norm(np.zeros(n_samples) - clf.predict(x_train)) < E
# Support vector machines with quadratic kernels perform almost perfectly
# on this data set, so predictor should return their prediction.
clf = CrossValidatedClassifier(classifier=SVC(probability=True,
kernel='poly',
degree=2,
random_state=42),
threshold=0.90,
cv=30)
clf.fit(x_train, y_train)
print(y_train - clf.predict(x_train))
assert norm(y_train - clf.predict(x_train)) < E

View File

@@ -0,0 +1,20 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import numpy as np
from miplearn.classifiers.evaluator import ClassifierEvaluator
from sklearn.neighbors import KNeighborsClassifier
def test_evaluator():
clf_a = KNeighborsClassifier(n_neighbors=1)
clf_b = KNeighborsClassifier(n_neighbors=2)
x_train = np.array([[0, 0], [1, 0]])
y_train = np.array([0, 1])
clf_a.fit(x_train, y_train)
clf_b.fit(x_train, y_train)
ev = ClassifierEvaluator()
assert ev.evaluate(clf_a, x_train, y_train) == 1.0
assert ev.evaluate(clf_b, x_train, y_train) == 0.5

View File

@@ -0,0 +1,34 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from unittest.mock import Mock
import numpy as np
from miplearn.classifiers import Classifier
from miplearn.classifiers.threshold import MinPrecisionThreshold
def test_threshold_dynamic():
clf = Mock(spec=Classifier)
clf.predict_proba = Mock(return_value=np.array([
[0.10, 0.90],
[0.10, 0.90],
[0.20, 0.80],
[0.30, 0.70],
]))
x_train = np.array([0, 1, 2, 3])
y_train = np.array([1, 1, 0, 0])
threshold = MinPrecisionThreshold(min_precision=1.0)
assert threshold.find(clf, x_train, y_train) == 0.90
threshold = MinPrecisionThreshold(min_precision=0.65)
assert threshold.find(clf, x_train, y_train) == 0.80
threshold = MinPrecisionThreshold(min_precision=0.50)
assert threshold.find(clf, x_train, y_train) == 0.70
threshold = MinPrecisionThreshold(min_precision=0.00)
assert threshold.find(clf, x_train, y_train) == 0.70