mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-07 18:08:51 -06:00
Move python files to root folder; remove built docs
This commit is contained in:
93
miplearn/components/cuts.py
Normal file
93
miplearn/components/cuts.py
Normal file
@@ -0,0 +1,93 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import sys
|
||||
from copy import deepcopy
|
||||
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
|
||||
from .component import Component
|
||||
from ..extractors import *
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class UserCutsComponent(Component):
|
||||
"""
|
||||
A component that predicts which user cuts to enforce.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
classifier=CountingClassifier(),
|
||||
threshold=0.05):
|
||||
self.violations = set()
|
||||
self.count = {}
|
||||
self.n_samples = 0
|
||||
self.threshold = threshold
|
||||
self.classifier_prototype = classifier
|
||||
self.classifiers = {}
|
||||
|
||||
def before_solve(self, solver, instance, model):
|
||||
logger.info("Predicting violated user cuts...")
|
||||
violations = self.predict(instance)
|
||||
logger.info("Enforcing %d cuts..." % len(violations))
|
||||
for v in violations:
|
||||
cut = instance.build_user_cut(model, v)
|
||||
solver.internal_solver.add_constraint(cut)
|
||||
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
pass
|
||||
|
||||
def fit(self, training_instances):
|
||||
logger.debug("Fitting...")
|
||||
features = InstanceFeaturesExtractor().extract(training_instances)
|
||||
|
||||
self.classifiers = {}
|
||||
violation_to_instance_idx = {}
|
||||
for (idx, instance) in enumerate(training_instances):
|
||||
for v in instance.found_violated_user_cuts:
|
||||
if v not in self.classifiers:
|
||||
self.classifiers[v] = deepcopy(self.classifier_prototype)
|
||||
violation_to_instance_idx[v] = []
|
||||
violation_to_instance_idx[v] += [idx]
|
||||
|
||||
for (v, classifier) in tqdm(self.classifiers.items(),
|
||||
desc="Fit (user cuts)",
|
||||
disable=not sys.stdout.isatty(),
|
||||
):
|
||||
logger.debug("Training: %s" % (str(v)))
|
||||
label = np.zeros(len(training_instances))
|
||||
label[violation_to_instance_idx[v]] = 1.0
|
||||
classifier.fit(features, label)
|
||||
|
||||
def predict(self, instance):
|
||||
violations = []
|
||||
features = InstanceFeaturesExtractor().extract([instance])
|
||||
for (v, classifier) in self.classifiers.items():
|
||||
proba = classifier.predict_proba(features)
|
||||
if proba[0][1] > self.threshold:
|
||||
violations += [v]
|
||||
return violations
|
||||
|
||||
def evaluate(self, instances):
|
||||
results = {}
|
||||
all_violations = set()
|
||||
for instance in instances:
|
||||
all_violations |= set(instance.found_violated_user_cuts)
|
||||
for idx in tqdm(range(len(instances)),
|
||||
desc="Evaluate (lazy)",
|
||||
disable=not sys.stdout.isatty(),
|
||||
):
|
||||
instance = instances[idx]
|
||||
condition_positive = set(instance.found_violated_user_cuts)
|
||||
condition_negative = all_violations - condition_positive
|
||||
pred_positive = set(self.predict(instance)) & all_violations
|
||||
pred_negative = all_violations - pred_positive
|
||||
tp = len(pred_positive & condition_positive)
|
||||
tn = len(pred_negative & condition_negative)
|
||||
fp = len(pred_positive & condition_negative)
|
||||
fn = len(pred_negative & condition_positive)
|
||||
results[idx] = classifier_evaluation_dict(tp, tn, fp, fn)
|
||||
return results
|
||||
Reference in New Issue
Block a user