mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-07 18:08:51 -06:00
Move python files to root folder; remove built docs
This commit is contained in:
84
miplearn/components/objective.py
Normal file
84
miplearn/components/objective.py
Normal file
@@ -0,0 +1,84 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
from sklearn.metrics import mean_squared_error, explained_variance_score, max_error, mean_absolute_error, r2_score
|
||||
|
||||
from .. import Component, InstanceFeaturesExtractor, ObjectiveValueExtractor
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ObjectiveValueComponent(Component):
|
||||
"""
|
||||
A Component which predicts the optimal objective value of the problem.
|
||||
"""
|
||||
def __init__(self,
|
||||
regressor=LinearRegression()):
|
||||
self.ub_regressor = None
|
||||
self.lb_regressor = None
|
||||
self.regressor_prototype = regressor
|
||||
|
||||
def before_solve(self, solver, instance, model):
|
||||
if self.ub_regressor is not None:
|
||||
lb, ub = self.predict([instance])[0]
|
||||
instance.predicted_ub = ub
|
||||
instance.predicted_lb = lb
|
||||
logger.info("Predicted objective: [%.2f, %.2f]" % (lb, ub))
|
||||
|
||||
def after_solve(self, solver, instance, model, results):
|
||||
if self.ub_regressor is not None:
|
||||
results["Predicted UB"] = instance.predicted_ub
|
||||
results["Predicted LB"] = instance.predicted_lb
|
||||
else:
|
||||
results["Predicted UB"] = None
|
||||
results["Predicted LB"] = None
|
||||
|
||||
def fit(self, training_instances):
|
||||
logger.debug("Extracting features...")
|
||||
features = InstanceFeaturesExtractor().extract(training_instances)
|
||||
ub = ObjectiveValueExtractor(kind="upper bound").extract(training_instances)
|
||||
lb = ObjectiveValueExtractor(kind="lower bound").extract(training_instances)
|
||||
assert ub.shape == (len(training_instances), 1)
|
||||
assert lb.shape == (len(training_instances), 1)
|
||||
self.ub_regressor = deepcopy(self.regressor_prototype)
|
||||
self.lb_regressor = deepcopy(self.regressor_prototype)
|
||||
logger.debug("Fitting ub_regressor...")
|
||||
self.ub_regressor.fit(features, ub.ravel())
|
||||
logger.debug("Fitting ub_regressor...")
|
||||
self.lb_regressor.fit(features, lb.ravel())
|
||||
|
||||
def predict(self, instances):
|
||||
features = InstanceFeaturesExtractor().extract(instances)
|
||||
lb = self.lb_regressor.predict(features)
|
||||
ub = self.ub_regressor.predict(features)
|
||||
assert lb.shape == (len(instances),)
|
||||
assert ub.shape == (len(instances),)
|
||||
return np.array([lb, ub]).T
|
||||
|
||||
def evaluate(self, instances):
|
||||
y_pred = self.predict(instances)
|
||||
y_true = np.array([[inst.lower_bound, inst.upper_bound] for inst in instances])
|
||||
y_true_lb, y_true_ub = y_true[:, 0], y_true[:, 1]
|
||||
y_pred_lb, y_pred_ub = y_pred[:, 1], y_pred[:, 1]
|
||||
ev = {
|
||||
"Lower bound": {
|
||||
"Mean squared error": mean_squared_error(y_true_lb, y_pred_lb),
|
||||
"Explained variance": explained_variance_score(y_true_lb, y_pred_lb),
|
||||
"Max error": max_error(y_true_lb, y_pred_lb),
|
||||
"Mean absolute error": mean_absolute_error(y_true_lb, y_pred_lb),
|
||||
"R2": r2_score(y_true_lb, y_pred_lb),
|
||||
"Median absolute error": mean_absolute_error(y_true_lb, y_pred_lb),
|
||||
},
|
||||
"Upper bound": {
|
||||
"Mean squared error": mean_squared_error(y_true_ub, y_pred_ub),
|
||||
"Explained variance": explained_variance_score(y_true_ub, y_pred_ub),
|
||||
"Max error": max_error(y_true_ub, y_pred_ub),
|
||||
"Mean absolute error": mean_absolute_error(y_true_ub, y_pred_ub),
|
||||
"R2": r2_score(y_true_ub, y_pred_ub),
|
||||
"Median absolute error": mean_absolute_error(y_true_ub, y_pred_ub),
|
||||
},
|
||||
}
|
||||
return ev
|
||||
Reference in New Issue
Block a user