mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Move python files to root folder; remove built docs
This commit is contained in:
32
miplearn/solvers/__init__.py
Normal file
32
miplearn/solvers/__init__.py
Normal file
@@ -0,0 +1,32 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
import sys
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class RedirectOutput:
|
||||
def __init__(self, streams):
|
||||
self.streams = streams
|
||||
|
||||
def write(self, data):
|
||||
for stream in self.streams:
|
||||
stream.write(data)
|
||||
|
||||
def flush(self):
|
||||
for stream in self.streams:
|
||||
stream.flush()
|
||||
|
||||
def __enter__(self):
|
||||
self._original_stdout = sys.stdout
|
||||
self._original_stderr = sys.stderr
|
||||
sys.stdout = self
|
||||
sys.stderr = self
|
||||
return self
|
||||
|
||||
def __exit__(self, _type, _value, _traceback):
|
||||
sys.stdout = self._original_stdout
|
||||
sys.stderr = self._original_stderr
|
||||
209
miplearn/solvers/guroby.py
Normal file
209
miplearn/solvers/guroby.py
Normal file
@@ -0,0 +1,209 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
import re
|
||||
import sys
|
||||
import logging
|
||||
from io import StringIO
|
||||
|
||||
from . import RedirectOutput
|
||||
from .internal import InternalSolver
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class GurobiSolver(InternalSolver):
|
||||
def __init__(self, params=None):
|
||||
if params is None:
|
||||
params = {
|
||||
"LazyConstraints": 1,
|
||||
"PreCrush": 1,
|
||||
}
|
||||
from gurobipy import GRB
|
||||
self.GRB = GRB
|
||||
self.instance = None
|
||||
self.model = None
|
||||
self.params = params
|
||||
self._all_vars = None
|
||||
self._bin_vars = None
|
||||
self._varname_to_var = None
|
||||
|
||||
def set_instance(self, instance, model=None):
|
||||
if model is None:
|
||||
model = instance.to_model()
|
||||
self.instance = instance
|
||||
self.model = model
|
||||
self.model.update()
|
||||
self._update_vars()
|
||||
|
||||
def _update_vars(self):
|
||||
self._all_vars = {}
|
||||
self._bin_vars = {}
|
||||
for var in self.model.getVars():
|
||||
m = re.search(r"([^[]*)\[(.*)\]", var.varName)
|
||||
if m is None:
|
||||
name = var.varName
|
||||
idx = [0]
|
||||
else:
|
||||
name = m.group(1)
|
||||
idx = tuple(int(k) if k.isdecimal() else k
|
||||
for k in m.group(2).split(","))
|
||||
if len(idx) == 1:
|
||||
idx = idx[0]
|
||||
if name not in self._all_vars:
|
||||
self._all_vars[name] = {}
|
||||
self._all_vars[name][idx] = var
|
||||
if var.vtype != 'C':
|
||||
if name not in self._bin_vars:
|
||||
self._bin_vars[name] = {}
|
||||
self._bin_vars[name][idx] = var
|
||||
|
||||
def _apply_params(self):
|
||||
for (name, value) in self.params.items():
|
||||
self.model.setParam(name, value)
|
||||
|
||||
def solve_lp(self, tee=False):
|
||||
self._apply_params()
|
||||
streams = [StringIO()]
|
||||
if tee:
|
||||
streams += [sys.stdout]
|
||||
for (varname, vardict) in self._bin_vars.items():
|
||||
for (idx, var) in vardict.items():
|
||||
var.vtype = self.GRB.CONTINUOUS
|
||||
var.lb = 0.0
|
||||
var.ub = 1.0
|
||||
with RedirectOutput(streams):
|
||||
self.model.optimize()
|
||||
for (varname, vardict) in self._bin_vars.items():
|
||||
for (idx, var) in vardict.items():
|
||||
var.vtype = self.GRB.BINARY
|
||||
log = streams[0].getvalue()
|
||||
return {
|
||||
"Optimal value": self.model.objVal,
|
||||
"Log": log
|
||||
}
|
||||
|
||||
def solve(self, tee=False):
|
||||
self.instance.found_violated_lazy_constraints = []
|
||||
self.instance.found_violated_user_cuts = []
|
||||
streams = [StringIO()]
|
||||
if tee:
|
||||
streams += [sys.stdout]
|
||||
|
||||
def cb(cb_model, cb_where):
|
||||
try:
|
||||
# User cuts
|
||||
if cb_where == self.GRB.Callback.MIPNODE:
|
||||
logger.debug("Finding violated cutting planes...")
|
||||
violations = self.instance.find_violated_user_cuts(cb_model)
|
||||
self.instance.found_violated_user_cuts += violations
|
||||
logger.debug(" %d found" % len(violations))
|
||||
for v in violations:
|
||||
cut = self.instance.build_user_cut(cb_model, v)
|
||||
cb_model.cbCut(cut)
|
||||
|
||||
# Lazy constraints
|
||||
if cb_where == self.GRB.Callback.MIPSOL:
|
||||
logger.debug("Finding violated lazy constraints...")
|
||||
violations = self.instance.find_violated_lazy_constraints(cb_model)
|
||||
self.instance.found_violated_lazy_constraints += violations
|
||||
logger.debug(" %d found" % len(violations))
|
||||
for v in violations:
|
||||
cut = self.instance.build_lazy_constraint(cb_model, v)
|
||||
cb_model.cbLazy(cut)
|
||||
except Exception as e:
|
||||
logger.error(e)
|
||||
|
||||
with RedirectOutput(streams):
|
||||
self.model.optimize(cb)
|
||||
log = streams[0].getvalue()
|
||||
return {
|
||||
"Lower bound": self.model.objVal,
|
||||
"Upper bound": self.model.objBound,
|
||||
"Wallclock time": self.model.runtime,
|
||||
"Nodes": int(self.model.nodeCount),
|
||||
"Sense": ("min" if self.model.modelSense == 1 else "max"),
|
||||
"Log": log,
|
||||
"Warm start value": self._extract_warm_start_value(log),
|
||||
}
|
||||
|
||||
def get_solution(self):
|
||||
solution = {}
|
||||
for (varname, vardict) in self._all_vars.items():
|
||||
solution[varname] = {}
|
||||
for (idx, var) in vardict.items():
|
||||
solution[varname][idx] = var.x
|
||||
return solution
|
||||
|
||||
def get_variables(self):
|
||||
variables = {}
|
||||
for (varname, vardict) in self._all_vars.items():
|
||||
variables[varname] = {}
|
||||
for (idx, var) in vardict.items():
|
||||
variables[varname] += [idx]
|
||||
return variables
|
||||
|
||||
def add_constraint(self, constraint):
|
||||
self.model.addConstr(constraint)
|
||||
|
||||
def set_warm_start(self, solution):
|
||||
count_fixed, count_total = 0, 0
|
||||
for (varname, vardict) in solution.items():
|
||||
for (idx, value) in vardict.items():
|
||||
count_total += 1
|
||||
if value is not None:
|
||||
count_fixed += 1
|
||||
self._all_vars[varname][idx].start = value
|
||||
logger.info("Setting start values for %d variables (out of %d)" %
|
||||
(count_fixed, count_total))
|
||||
|
||||
def clear_warm_start(self):
|
||||
for (varname, vardict) in self._all_vars:
|
||||
for (idx, var) in vardict.items():
|
||||
var[idx].start = self.GRB.UNDEFINED
|
||||
|
||||
def fix(self, solution):
|
||||
for (varname, vardict) in solution.items():
|
||||
for (idx, value) in vardict.items():
|
||||
if value is None:
|
||||
continue
|
||||
var = self._all_vars[varname][idx]
|
||||
var.vtype = self.GRB.CONTINUOUS
|
||||
var.lb = value
|
||||
var.ub = value
|
||||
|
||||
def set_branching_priorities(self, priorities):
|
||||
logger.warning("set_branching_priorities not implemented")
|
||||
|
||||
def set_threads(self, threads):
|
||||
self.params["Threads"] = threads
|
||||
|
||||
def set_time_limit(self, time_limit):
|
||||
self.params["TimeLimit"] = time_limit
|
||||
|
||||
def set_node_limit(self, node_limit):
|
||||
self.params["NodeLimit"] = node_limit
|
||||
|
||||
def set_gap_tolerance(self, gap_tolerance):
|
||||
self.params["MIPGap"] = gap_tolerance
|
||||
|
||||
def _extract_warm_start_value(self, log):
|
||||
ws = self.__extract(log, "MIP start with objective ([0-9.e+-]*)")
|
||||
if ws is not None:
|
||||
ws = float(ws)
|
||||
return ws
|
||||
|
||||
def __extract(self, log, regexp, default=None):
|
||||
value = default
|
||||
for line in log.splitlines():
|
||||
matches = re.findall(regexp, line)
|
||||
if len(matches) == 0:
|
||||
continue
|
||||
value = matches[0]
|
||||
return value
|
||||
|
||||
def __getstate__(self):
|
||||
return self.params
|
||||
|
||||
def __setstate__(self, state):
|
||||
self.params = state
|
||||
164
miplearn/solvers/internal.py
Normal file
164
miplearn/solvers/internal.py
Normal file
@@ -0,0 +1,164 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class InternalSolver(ABC):
|
||||
"""
|
||||
Abstract class representing the MIP solver used internally by LearningSolver.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def solve_lp(self, tee=False):
|
||||
"""
|
||||
Solves the LP relaxation of the currently loaded instance. After this
|
||||
method finishes, the solution can be retrieved by calling `get_solution`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
tee: bool
|
||||
If true, prints the solver log to the screen.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dict
|
||||
A dictionary of solver statistics containing the following keys:
|
||||
"Optimal value".
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_solution(self):
|
||||
"""
|
||||
Returns current solution found by the solver.
|
||||
|
||||
If called after `solve`, returns the best primal solution found during
|
||||
the search. If called after `solve_lp`, returns the optimal solution
|
||||
to the LP relaxation.
|
||||
|
||||
The solution is a dictionary `sol`, where the optimal value of `var[idx]`
|
||||
is given by `sol[var][idx]`.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def set_warm_start(self, solution):
|
||||
"""
|
||||
Sets the warm start to be used by the solver.
|
||||
|
||||
The solution should be a dictionary following the same format as the
|
||||
one produced by `get_solution`. Only one warm start is supported.
|
||||
Calling this function when a warm start already exists will
|
||||
remove the previous warm start.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def clear_warm_start(self):
|
||||
"""
|
||||
Removes any existing warm start from the solver.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def set_instance(self, instance, model=None):
|
||||
"""
|
||||
Loads the given instance into the solver.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
instance: miplearn.Instance
|
||||
The instance to be loaded.
|
||||
model:
|
||||
The concrete optimization model corresponding to this instance
|
||||
(e.g. JuMP.Model or pyomo.core.ConcreteModel). If not provided,
|
||||
it will be generated by calling `instance.to_model()`.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def fix(self, solution):
|
||||
"""
|
||||
Fixes the values of a subset of decision variables.
|
||||
|
||||
The values should be provided in the dictionary format generated by
|
||||
`get_solution`. Missing values in the solution indicate variables
|
||||
that should be left free.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def set_branching_priorities(self, priorities):
|
||||
"""
|
||||
Sets the branching priorities for the given decision variables.
|
||||
|
||||
When the MIP solver needs to decide on which variable to branch, variables
|
||||
with higher priority are picked first, given that they are fractional.
|
||||
Ties are solved arbitrarily. By default, all variables have priority zero.
|
||||
|
||||
The priorities should be provided in the dictionary format generated by
|
||||
`get_solution`. Missing values indicate variables whose priorities
|
||||
should not be modified.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def add_constraint(self, constraint):
|
||||
"""
|
||||
Adds a single constraint to the model.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def solve(self, tee=False):
|
||||
"""
|
||||
Solves the currently loaded instance. After this method finishes,
|
||||
the best solution found can be retrieved by calling `get_solution`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
tee: bool
|
||||
If true, prints the solver log to the screen.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dict
|
||||
A dictionary of solver statistics containing the following keys:
|
||||
"Lower bound", "Upper bound", "Wallclock time", "Nodes", "Sense",
|
||||
"Log" and "Warm start value".
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def set_threads(self, threads):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def set_time_limit(self, time_limit):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def set_node_limit(self, node_limit):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def set_gap_tolerance(self, gap_tolerance):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_variables(self):
|
||||
pass
|
||||
|
||||
def get_empty_solution(self):
|
||||
solution = {}
|
||||
for (var, indices) in self.get_variables().items():
|
||||
solution[var] = {}
|
||||
for idx in indices:
|
||||
solution[var][idx] = 0.0
|
||||
return solution
|
||||
|
||||
227
miplearn/solvers/learning.py
Normal file
227
miplearn/solvers/learning.py
Normal file
@@ -0,0 +1,227 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from typing import Optional, List
|
||||
from p_tqdm import p_map
|
||||
|
||||
from .. import (ObjectiveValueComponent,
|
||||
PrimalSolutionComponent,
|
||||
LazyConstraintsComponent,
|
||||
UserCutsComponent)
|
||||
from .pyomo.cplex import CplexPyomoSolver
|
||||
from .pyomo.gurobi import GurobiPyomoSolver
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# Global memory for multiprocessing
|
||||
SOLVER = [None] # type: List[Optional[LearningSolver]]
|
||||
INSTANCES = [None] # type: List[Optional[dict]]
|
||||
|
||||
|
||||
def _parallel_solve(instance_idx):
|
||||
solver = deepcopy(SOLVER[0])
|
||||
instance = INSTANCES[0][instance_idx]
|
||||
results = solver.solve(instance)
|
||||
return {
|
||||
"Results": results,
|
||||
"Solution": instance.solution,
|
||||
"LP solution": instance.lp_solution,
|
||||
"Violated lazy constraints": instance.found_violated_lazy_constraints,
|
||||
"Violated user cuts": instance.found_violated_user_cuts,
|
||||
}
|
||||
|
||||
|
||||
class LearningSolver:
|
||||
"""
|
||||
Mixed-Integer Linear Programming (MIP) solver that extracts information
|
||||
from previous runs, using Machine Learning methods, to accelerate the
|
||||
solution of new (yet unseen) instances.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
components=None,
|
||||
gap_tolerance=None,
|
||||
mode="exact",
|
||||
solver="gurobi",
|
||||
threads=None,
|
||||
time_limit=None,
|
||||
node_limit=None):
|
||||
self.components = {}
|
||||
self.mode = mode
|
||||
self.internal_solver = None
|
||||
self.internal_solver_factory = solver
|
||||
self.threads = threads
|
||||
self.time_limit = time_limit
|
||||
self.gap_tolerance = gap_tolerance
|
||||
self.tee = False
|
||||
self.node_limit = node_limit
|
||||
|
||||
if components is not None:
|
||||
for comp in components:
|
||||
self.add(comp)
|
||||
else:
|
||||
self.add(ObjectiveValueComponent())
|
||||
self.add(PrimalSolutionComponent())
|
||||
self.add(LazyConstraintsComponent())
|
||||
self.add(UserCutsComponent())
|
||||
|
||||
assert self.mode in ["exact", "heuristic"]
|
||||
for component in self.components.values():
|
||||
component.mode = self.mode
|
||||
|
||||
def _create_internal_solver(self):
|
||||
logger.debug("Initializing %s" % self.internal_solver_factory)
|
||||
if self.internal_solver_factory == "cplex":
|
||||
solver = CplexPyomoSolver()
|
||||
elif self.internal_solver_factory == "gurobi":
|
||||
solver = GurobiPyomoSolver()
|
||||
elif callable(self.internal_solver_factory):
|
||||
solver = self.internal_solver_factory()
|
||||
else:
|
||||
solver = self.internal_solver_factory
|
||||
if self.threads is not None:
|
||||
solver.set_threads(self.threads)
|
||||
if self.time_limit is not None:
|
||||
solver.set_time_limit(self.time_limit)
|
||||
if self.gap_tolerance is not None:
|
||||
solver.set_gap_tolerance(self.gap_tolerance)
|
||||
if self.node_limit is not None:
|
||||
solver.set_node_limit(self.node_limit)
|
||||
return solver
|
||||
|
||||
def solve(self,
|
||||
instance,
|
||||
model=None,
|
||||
tee=False,
|
||||
relaxation_only=False,
|
||||
solve_lp_first=True):
|
||||
"""
|
||||
Solves the given instance. If trained machine-learning models are
|
||||
available, they will be used to accelerate the solution process.
|
||||
|
||||
This method modifies the instance object. Specifically, the following
|
||||
properties are set:
|
||||
- instance.lp_solution
|
||||
- instance.lp_value
|
||||
- instance.lower_bound
|
||||
- instance.upper_bound
|
||||
- instance.solution
|
||||
- instance.found_violated_lazy_constraints
|
||||
- instance.solver_log
|
||||
|
||||
Additional solver components may set additional properties. Please
|
||||
see their documentation for more details.
|
||||
|
||||
If `solve_lp_first` is False, the properties lp_solution and lp_value
|
||||
will be set to dummy values.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
instance: miplearn.Instance
|
||||
The instance to be solved
|
||||
model: pyomo.core.ConcreteModel
|
||||
The corresponding Pyomo model. If not provided, it will be created.
|
||||
tee: bool
|
||||
If true, prints solver log to screen.
|
||||
relaxation_only: bool
|
||||
If true, solve only the root LP relaxation.
|
||||
solve_lp_first: bool
|
||||
If true, solve LP relaxation first, then solve original MILP. This
|
||||
option should be activated if the LP relaxation is not very
|
||||
expensive to solve and if it provides good hints for the integer
|
||||
solution.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dict
|
||||
A dictionary of solver statistics containing at least the following
|
||||
keys: "Lower bound", "Upper bound", "Wallclock time", "Nodes",
|
||||
"Sense", "Log", "Warm start value" and "LP value".
|
||||
|
||||
Additional components may generate additional keys. For example,
|
||||
ObjectiveValueComponent adds the keys "Predicted LB" and
|
||||
"Predicted UB". See the documentation of each component for more
|
||||
details.
|
||||
"""
|
||||
|
||||
if model is None:
|
||||
model = instance.to_model()
|
||||
|
||||
self.tee = tee
|
||||
self.internal_solver = self._create_internal_solver()
|
||||
self.internal_solver.set_instance(instance, model)
|
||||
|
||||
if solve_lp_first:
|
||||
logger.debug("Solving LP relaxation...")
|
||||
results = self.internal_solver.solve_lp(tee=tee)
|
||||
instance.lp_solution = self.internal_solver.get_solution()
|
||||
instance.lp_value = results["Optimal value"]
|
||||
else:
|
||||
instance.lp_solution = self.internal_solver.get_empty_solution()
|
||||
instance.lp_value = 0.0
|
||||
|
||||
logger.debug("Running before_solve callbacks...")
|
||||
for component in self.components.values():
|
||||
component.before_solve(self, instance, model)
|
||||
|
||||
if relaxation_only:
|
||||
return results
|
||||
|
||||
results = self.internal_solver.solve(tee=tee)
|
||||
results["LP value"] = instance.lp_value
|
||||
|
||||
# Read MIP solution and bounds
|
||||
instance.lower_bound = results["Lower bound"]
|
||||
instance.upper_bound = results["Upper bound"]
|
||||
instance.solver_log = results["Log"]
|
||||
instance.solution = self.internal_solver.get_solution()
|
||||
|
||||
logger.debug("Calling after_solve callbacks...")
|
||||
for component in self.components.values():
|
||||
component.after_solve(self, instance, model, results)
|
||||
|
||||
return results
|
||||
|
||||
def parallel_solve(self,
|
||||
instances,
|
||||
n_jobs=4,
|
||||
label="Solve"):
|
||||
|
||||
self.internal_solver = None
|
||||
SOLVER[0] = self
|
||||
INSTANCES[0] = instances
|
||||
p_map_results = p_map(_parallel_solve,
|
||||
list(range(len(instances))),
|
||||
num_cpus=n_jobs,
|
||||
desc=label)
|
||||
|
||||
results = [p["Results"] for p in p_map_results]
|
||||
for (idx, r) in enumerate(p_map_results):
|
||||
instances[idx].solution = r["Solution"]
|
||||
instances[idx].lp_solution = r["LP solution"]
|
||||
instances[idx].lp_value = r["Results"]["LP value"]
|
||||
instances[idx].lower_bound = r["Results"]["Lower bound"]
|
||||
instances[idx].upper_bound = r["Results"]["Upper bound"]
|
||||
instances[idx].found_violated_lazy_constraints = r["Violated lazy constraints"]
|
||||
instances[idx].found_violated_user_cuts = r["Violated user cuts"]
|
||||
instances[idx].solver_log = r["Results"]["Log"]
|
||||
|
||||
return results
|
||||
|
||||
def fit(self, training_instances):
|
||||
if len(training_instances) == 0:
|
||||
return
|
||||
for component in self.components.values():
|
||||
component.fit(training_instances)
|
||||
|
||||
def add(self, component):
|
||||
name = component.__class__.__name__
|
||||
self.components[name] = component
|
||||
|
||||
def __getstate__(self):
|
||||
self.internal_solver = None
|
||||
return self.__dict__
|
||||
3
miplearn/solvers/pyomo/__init__.py
Normal file
3
miplearn/solvers/pyomo/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
223
miplearn/solvers/pyomo/base.py
Normal file
223
miplearn/solvers/pyomo/base.py
Normal file
@@ -0,0 +1,223 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import re
|
||||
import sys
|
||||
import logging
|
||||
import pyomo
|
||||
from abc import abstractmethod
|
||||
from io import StringIO
|
||||
from pyomo import environ as pe
|
||||
from pyomo.core import Var
|
||||
|
||||
from .. import RedirectOutput
|
||||
from ..internal import InternalSolver
|
||||
from ...instance import Instance
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BasePyomoSolver(InternalSolver):
|
||||
"""
|
||||
Base class for all Pyomo solvers.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.instance = None
|
||||
self.model = None
|
||||
self._all_vars = None
|
||||
self._bin_vars = None
|
||||
self._is_warm_start_available = False
|
||||
self._pyomo_solver = None
|
||||
self._obj_sense = None
|
||||
self._varname_to_var = {}
|
||||
|
||||
def solve_lp(self, tee=False):
|
||||
for var in self._bin_vars:
|
||||
lb, ub = var.bounds
|
||||
var.setlb(lb)
|
||||
var.setub(ub)
|
||||
var.domain = pyomo.core.base.set_types.Reals
|
||||
self._pyomo_solver.update_var(var)
|
||||
results = self._pyomo_solver.solve(tee=tee)
|
||||
for var in self._bin_vars:
|
||||
var.domain = pyomo.core.base.set_types.Binary
|
||||
self._pyomo_solver.update_var(var)
|
||||
return {
|
||||
"Optimal value": results["Problem"][0]["Lower bound"],
|
||||
}
|
||||
|
||||
def get_solution(self):
|
||||
solution = {}
|
||||
for var in self.model.component_objects(Var):
|
||||
solution[str(var)] = {}
|
||||
for index in var:
|
||||
solution[str(var)][index] = var[index].value
|
||||
return solution
|
||||
|
||||
def get_variables(self):
|
||||
variables = {}
|
||||
for var in self.model.component_objects(Var):
|
||||
variables[str(var)] = []
|
||||
for index in var:
|
||||
variables[str(var)] += [index]
|
||||
return variables
|
||||
|
||||
def set_warm_start(self, solution):
|
||||
self.clear_warm_start()
|
||||
count_total, count_fixed = 0, 0
|
||||
for var_name in solution:
|
||||
var = self._varname_to_var[var_name]
|
||||
for index in solution[var_name]:
|
||||
count_total += 1
|
||||
var[index].value = solution[var_name][index]
|
||||
if solution[var_name][index] is not None:
|
||||
count_fixed += 1
|
||||
if count_fixed > 0:
|
||||
self._is_warm_start_available = True
|
||||
logger.info("Setting start values for %d variables (out of %d)" %
|
||||
(count_fixed, count_total))
|
||||
|
||||
def clear_warm_start(self):
|
||||
for var in self._all_vars:
|
||||
if not var.fixed:
|
||||
var.value = None
|
||||
self._is_warm_start_available = False
|
||||
|
||||
def set_instance(self, instance, model=None):
|
||||
if model is None:
|
||||
model = instance.to_model()
|
||||
assert isinstance(instance, Instance)
|
||||
assert isinstance(model, pe.ConcreteModel)
|
||||
self.instance = instance
|
||||
self.model = model
|
||||
self._pyomo_solver.set_instance(model)
|
||||
|
||||
# Update objective sense
|
||||
self._obj_sense = "max"
|
||||
if self._pyomo_solver._objective.sense == pyomo.core.kernel.objective.minimize:
|
||||
self._obj_sense = "min"
|
||||
|
||||
# Update variables
|
||||
self._all_vars = []
|
||||
self._bin_vars = []
|
||||
self._varname_to_var = {}
|
||||
for var in model.component_objects(Var):
|
||||
self._varname_to_var[var.name] = var
|
||||
for idx in var:
|
||||
self._all_vars += [var[idx]]
|
||||
if var[idx].domain == pyomo.core.base.set_types.Binary:
|
||||
self._bin_vars += [var[idx]]
|
||||
|
||||
def fix(self, solution):
|
||||
count_total, count_fixed = 0, 0
|
||||
for varname in solution:
|
||||
for index in solution[varname]:
|
||||
var = self._varname_to_var[varname]
|
||||
count_total += 1
|
||||
if solution[varname][index] is None:
|
||||
continue
|
||||
count_fixed += 1
|
||||
var[index].fix(solution[varname][index])
|
||||
self._pyomo_solver.update_var(var[index])
|
||||
logger.info("Fixing values for %d variables (out of %d)" %
|
||||
(count_fixed, count_total))
|
||||
|
||||
def add_constraint(self, constraint):
|
||||
self._pyomo_solver.add_constraint(constraint)
|
||||
|
||||
def solve(self, tee=False):
|
||||
total_wallclock_time = 0
|
||||
streams = [StringIO()]
|
||||
if tee:
|
||||
streams += [sys.stdout]
|
||||
self.instance.found_violated_lazy_constraints = []
|
||||
self.instance.found_violated_user_cuts = []
|
||||
while True:
|
||||
logger.debug("Solving MIP...")
|
||||
with RedirectOutput(streams):
|
||||
results = self._pyomo_solver.solve(tee=True,
|
||||
warmstart=self._is_warm_start_available)
|
||||
total_wallclock_time += results["Solver"][0]["Wallclock time"]
|
||||
logger.debug("Finding violated constraints...")
|
||||
violations = self.instance.find_violated_lazy_constraints(self.model)
|
||||
if len(violations) == 0:
|
||||
break
|
||||
self.instance.found_violated_lazy_constraints += violations
|
||||
logger.debug(" %d violations found" % len(violations))
|
||||
for v in violations:
|
||||
cut = self.instance.build_lazy_constraint(self.model, v)
|
||||
self.add_constraint(cut)
|
||||
|
||||
log = streams[0].getvalue()
|
||||
return {
|
||||
"Lower bound": results["Problem"][0]["Lower bound"],
|
||||
"Upper bound": results["Problem"][0]["Upper bound"],
|
||||
"Wallclock time": total_wallclock_time,
|
||||
"Nodes": self._extract_node_count(log),
|
||||
"Sense": self._obj_sense,
|
||||
"Log": log,
|
||||
"Warm start value": self._extract_warm_start_value(log),
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def __extract(log, regexp, default=None):
|
||||
value = default
|
||||
for line in log.splitlines():
|
||||
matches = re.findall(regexp, line)
|
||||
if len(matches) == 0:
|
||||
continue
|
||||
value = matches[0]
|
||||
return value
|
||||
|
||||
def _extract_warm_start_value(self, log):
|
||||
value = self.__extract(log, self._get_warm_start_regexp())
|
||||
if value is not None:
|
||||
value = float(value)
|
||||
return value
|
||||
|
||||
def _extract_node_count(self, log):
|
||||
return int(self.__extract(log,
|
||||
self._get_node_count_regexp(),
|
||||
default=1))
|
||||
|
||||
def set_threads(self, threads):
|
||||
key = self._get_threads_option_name()
|
||||
self._pyomo_solver.options[key] = threads
|
||||
|
||||
def set_time_limit(self, time_limit):
|
||||
key = self._get_time_limit_option_name()
|
||||
self._pyomo_solver.options[key] = time_limit
|
||||
|
||||
def set_node_limit(self, node_limit):
|
||||
key = self._get_node_limit_option_name()
|
||||
self._pyomo_solver.options[key] = node_limit
|
||||
|
||||
def set_gap_tolerance(self, gap_tolerance):
|
||||
key = self._get_gap_tolerance_option_name()
|
||||
self._pyomo_solver.options[key] = gap_tolerance
|
||||
|
||||
@abstractmethod
|
||||
def _get_warm_start_regexp(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _get_node_count_regexp(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _get_threads_option_name(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _get_time_limit_option_name(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _get_node_limit_option_name(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _get_gap_tolerance_option_name(self):
|
||||
pass
|
||||
49
miplearn/solvers/pyomo/cplex.py
Normal file
49
miplearn/solvers/pyomo/cplex.py
Normal file
@@ -0,0 +1,49 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from pyomo import environ as pe
|
||||
from scipy.stats import randint
|
||||
|
||||
from .base import BasePyomoSolver
|
||||
|
||||
|
||||
class CplexPyomoSolver(BasePyomoSolver):
|
||||
def __init__(self, options=None):
|
||||
"""
|
||||
Creates a new CPLEX solver, accessed through Pyomo.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
options: dict
|
||||
Dictionary of options to pass to the Pyomo solver. For example,
|
||||
{"mip_display": 5} to increase the log verbosity.
|
||||
"""
|
||||
super().__init__()
|
||||
self._pyomo_solver = pe.SolverFactory('cplex_persistent')
|
||||
self._pyomo_solver.options["randomseed"] = randint(low=0, high=1000).rvs()
|
||||
self._pyomo_solver.options["mip_display"] = 4
|
||||
if options is not None:
|
||||
for (key, value) in options.items():
|
||||
self._pyomo_solver.options[key] = value
|
||||
|
||||
def _get_warm_start_regexp(self):
|
||||
return "MIP start .* with objective ([0-9.e+-]*)\\."
|
||||
|
||||
def _get_node_count_regexp(self):
|
||||
return "^[ *] *([0-9]+)"
|
||||
|
||||
def _get_threads_option_name(self):
|
||||
return "threads"
|
||||
|
||||
def _get_time_limit_option_name(self):
|
||||
return "timelimit"
|
||||
|
||||
def _get_node_limit_option_name(self):
|
||||
return "mip_limits_nodes"
|
||||
|
||||
def _get_gap_tolerance_option_name(self):
|
||||
return "mip_tolerances_mipgap"
|
||||
|
||||
def set_branching_priorities(self, priorities):
|
||||
raise NotImplementedError
|
||||
129
miplearn/solvers/pyomo/gurobi.py
Normal file
129
miplearn/solvers/pyomo/gurobi.py
Normal file
@@ -0,0 +1,129 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import sys
|
||||
import logging
|
||||
from io import StringIO
|
||||
from pyomo import environ as pe
|
||||
from scipy.stats import randint
|
||||
|
||||
from .base import BasePyomoSolver
|
||||
from .. import RedirectOutput
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class GurobiPyomoSolver(BasePyomoSolver):
|
||||
def __init__(self,
|
||||
use_lazy_callbacks=True,
|
||||
options=None):
|
||||
"""
|
||||
Creates a new Gurobi solver, accessed through Pyomo.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
use_lazy_callbacks: bool
|
||||
If true, lazy constraints will be enforced via lazy callbacks.
|
||||
Otherwise, they will be enforced via a simple solve-check loop.
|
||||
options: dict
|
||||
Dictionary of options to pass to the Pyomo solver. For example,
|
||||
{"Threads": 4} to set the number of threads.
|
||||
"""
|
||||
super().__init__()
|
||||
self._use_lazy_callbacks = use_lazy_callbacks
|
||||
self._pyomo_solver = pe.SolverFactory('gurobi_persistent')
|
||||
self._pyomo_solver.options["Seed"] = randint(low=0, high=1000).rvs()
|
||||
if options is not None:
|
||||
for (key, value) in options.items():
|
||||
self._pyomo_solver.options[key] = value
|
||||
|
||||
def solve(self, tee=False):
|
||||
if self._use_lazy_callbacks:
|
||||
return self._solve_with_callbacks(tee)
|
||||
else:
|
||||
return super().solve(tee)
|
||||
|
||||
def _solve_with_callbacks(self, tee):
|
||||
from gurobipy import GRB
|
||||
|
||||
def cb(cb_model, cb_opt, cb_where):
|
||||
try:
|
||||
# User cuts
|
||||
if cb_where == GRB.Callback.MIPNODE:
|
||||
logger.debug("Finding violated cutting planes...")
|
||||
cb_opt.cbGetNodeRel(self._all_vars)
|
||||
violations = self.instance.find_violated_user_cuts(cb_model)
|
||||
self.instance.found_violated_user_cuts += violations
|
||||
logger.debug(" %d found" % len(violations))
|
||||
for v in violations:
|
||||
cut = self.instance.build_user_cut(cb_model, v)
|
||||
cb_opt.cbCut(cut)
|
||||
|
||||
# Lazy constraints
|
||||
if cb_where == GRB.Callback.MIPSOL:
|
||||
cb_opt.cbGetSolution(self._all_vars)
|
||||
logger.debug("Finding violated lazy constraints...")
|
||||
violations = self.instance.find_violated_lazy_constraints(cb_model)
|
||||
self.instance.found_violated_lazy_constraints += violations
|
||||
logger.debug(" %d found" % len(violations))
|
||||
for v in violations:
|
||||
cut = self.instance.build_lazy_constraint(cb_model, v)
|
||||
cb_opt.cbLazy(cut)
|
||||
except Exception as e:
|
||||
logger.error(e)
|
||||
|
||||
self._pyomo_solver.options["LazyConstraints"] = 1
|
||||
self._pyomo_solver.options["PreCrush"] = 1
|
||||
self._pyomo_solver.set_callback(cb)
|
||||
|
||||
self.instance.found_violated_lazy_constraints = []
|
||||
self.instance.found_violated_user_cuts = []
|
||||
|
||||
streams = [StringIO()]
|
||||
if tee:
|
||||
streams += [sys.stdout]
|
||||
with RedirectOutput(streams):
|
||||
results = self._pyomo_solver.solve(tee=True,
|
||||
warmstart=self._is_warm_start_available)
|
||||
|
||||
self._pyomo_solver.set_callback(None)
|
||||
log = streams[0].getvalue()
|
||||
return {
|
||||
"Lower bound": results["Problem"][0]["Lower bound"],
|
||||
"Upper bound": results["Problem"][0]["Upper bound"],
|
||||
"Wallclock time": results["Solver"][0]["Wallclock time"],
|
||||
"Nodes": self._extract_node_count(log),
|
||||
"Sense": self._obj_sense,
|
||||
"Log": log,
|
||||
"Warm start value": self._extract_warm_start_value(log),
|
||||
}
|
||||
|
||||
def _extract_node_count(self, log):
|
||||
return max(1, int(self._pyomo_solver._solver_model.getAttr("NodeCount")))
|
||||
|
||||
def _get_warm_start_regexp(self):
|
||||
return "MIP start with objective ([0-9.e+-]*)"
|
||||
|
||||
def _get_node_count_regexp(self):
|
||||
return None
|
||||
|
||||
def _get_threads_option_name(self):
|
||||
return "Threads"
|
||||
|
||||
def _get_time_limit_option_name(self):
|
||||
return "TimeLimit"
|
||||
|
||||
def _get_node_limit_option_name(self):
|
||||
return "NodeLimit"
|
||||
|
||||
def _get_gap_tolerance_option_name(self):
|
||||
return "MIPGap"
|
||||
|
||||
def set_branching_priorities(self, priorities):
|
||||
from gurobipy import GRB
|
||||
for varname in priorities.keys():
|
||||
var = self._varname_to_var[varname]
|
||||
for (index, priority) in priorities[varname].items():
|
||||
gvar = self._pyomo_solver._pyomo_var_to_solver_var_map[var[index]]
|
||||
gvar.setAttr(GRB.Attr.BranchPriority, int(round(priority)))
|
||||
26
miplearn/solvers/tests/__init__.py
Normal file
26
miplearn/solvers/tests/__init__.py
Normal file
@@ -0,0 +1,26 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from miplearn import BasePyomoSolver, GurobiSolver, GurobiPyomoSolver, CplexPyomoSolver
|
||||
from miplearn.problems.knapsack import KnapsackInstance, GurobiKnapsackInstance
|
||||
|
||||
|
||||
def _get_instance(solver):
|
||||
if issubclass(solver, BasePyomoSolver):
|
||||
return KnapsackInstance(
|
||||
weights=[23., 26., 20., 18.],
|
||||
prices=[505., 352., 458., 220.],
|
||||
capacity=67.,
|
||||
)
|
||||
if issubclass(solver, GurobiSolver):
|
||||
return GurobiKnapsackInstance(
|
||||
weights=[23., 26., 20., 18.],
|
||||
prices=[505., 352., 458., 220.],
|
||||
capacity=67.,
|
||||
)
|
||||
assert False
|
||||
|
||||
|
||||
def _get_internal_solvers():
|
||||
return [GurobiPyomoSolver, CplexPyomoSolver, GurobiSolver]
|
||||
115
miplearn/solvers/tests/test_internal_solver.py
Normal file
115
miplearn/solvers/tests/test_internal_solver.py
Normal file
@@ -0,0 +1,115 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from io import StringIO
|
||||
|
||||
import pyomo.environ as pe
|
||||
from miplearn import BasePyomoSolver
|
||||
from miplearn.problems.knapsack import ChallengeA
|
||||
from miplearn.solvers import RedirectOutput
|
||||
|
||||
from . import _get_instance, _get_internal_solvers
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def test_redirect_output():
|
||||
import sys
|
||||
original_stdout = sys.stdout
|
||||
io = StringIO()
|
||||
with RedirectOutput([io]):
|
||||
print("Hello world")
|
||||
assert sys.stdout == original_stdout
|
||||
assert io.getvalue() == "Hello world\n"
|
||||
|
||||
|
||||
def test_internal_solver_warm_starts():
|
||||
for solver_class in _get_internal_solvers():
|
||||
logger.info("Solver: %s" % solver_class)
|
||||
instance = _get_instance(solver_class)
|
||||
model = instance.to_model()
|
||||
solver = solver_class()
|
||||
solver.set_instance(instance, model)
|
||||
solver.set_warm_start({
|
||||
"x": {
|
||||
0: 1.0,
|
||||
1: 0.0,
|
||||
2: 0.0,
|
||||
3: 1.0,
|
||||
}
|
||||
})
|
||||
stats = solver.solve(tee=True)
|
||||
assert stats["Warm start value"] == 725.0
|
||||
|
||||
solver.set_warm_start({
|
||||
"x": {
|
||||
0: 1.0,
|
||||
1: 1.0,
|
||||
2: 1.0,
|
||||
3: 1.0,
|
||||
}
|
||||
})
|
||||
stats = solver.solve(tee=True)
|
||||
assert stats["Warm start value"] is None
|
||||
|
||||
solver.fix({
|
||||
"x": {
|
||||
0: 1.0,
|
||||
1: 0.0,
|
||||
2: 0.0,
|
||||
3: 1.0,
|
||||
}
|
||||
})
|
||||
stats = solver.solve(tee=True)
|
||||
assert stats["Lower bound"] == 725.0
|
||||
assert stats["Upper bound"] == 725.0
|
||||
|
||||
|
||||
def test_internal_solver():
|
||||
for solver_class in _get_internal_solvers():
|
||||
logger.info("Solver: %s" % solver_class)
|
||||
|
||||
instance = _get_instance(solver_class)
|
||||
model = instance.to_model()
|
||||
solver = solver_class()
|
||||
solver.set_instance(instance, model)
|
||||
|
||||
stats = solver.solve_lp()
|
||||
assert round(stats["Optimal value"], 3) == 1287.923
|
||||
|
||||
solution = solver.get_solution()
|
||||
assert round(solution["x"][0], 3) == 1.000
|
||||
assert round(solution["x"][1], 3) == 0.923
|
||||
assert round(solution["x"][2], 3) == 1.000
|
||||
assert round(solution["x"][3], 3) == 0.000
|
||||
|
||||
stats = solver.solve(tee=True)
|
||||
assert len(stats["Log"]) > 100
|
||||
assert stats["Lower bound"] == 1183.0
|
||||
assert stats["Upper bound"] == 1183.0
|
||||
assert stats["Sense"] == "max"
|
||||
assert isinstance(stats["Wallclock time"], float)
|
||||
assert isinstance(stats["Nodes"], int)
|
||||
|
||||
solution = solver.get_solution()
|
||||
assert solution["x"][0] == 1.0
|
||||
assert solution["x"][1] == 0.0
|
||||
assert solution["x"][2] == 1.0
|
||||
assert solution["x"][3] == 1.0
|
||||
|
||||
if isinstance(solver, BasePyomoSolver):
|
||||
model.cut = pe.Constraint(expr=model.x[0] <= 0.5)
|
||||
solver.add_constraint(model.cut)
|
||||
solver.solve_lp()
|
||||
assert model.x[0].value == 0.5
|
||||
|
||||
|
||||
# def test_node_count():
|
||||
# for solver in _get_internal_solvers():
|
||||
# challenge = ChallengeA()
|
||||
# solver.set_time_limit(1)
|
||||
# solver.set_instance(challenge.test_instances[0])
|
||||
# stats = solver.solve(tee=True)
|
||||
# assert stats["Nodes"] > 1
|
||||
67
miplearn/solvers/tests/test_learning_solver.py
Normal file
67
miplearn/solvers/tests/test_learning_solver.py
Normal file
@@ -0,0 +1,67 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
import pickle
|
||||
import tempfile
|
||||
|
||||
from miplearn import LazyConstraintsComponent
|
||||
from miplearn import LearningSolver
|
||||
|
||||
from . import _get_instance, _get_internal_solvers
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def test_learning_solver():
|
||||
for mode in ["exact", "heuristic"]:
|
||||
for internal_solver in _get_internal_solvers():
|
||||
logger.info("Solver: %s" % internal_solver)
|
||||
instance = _get_instance(internal_solver)
|
||||
solver = LearningSolver(time_limit=300,
|
||||
gap_tolerance=1e-3,
|
||||
threads=1,
|
||||
solver=internal_solver,
|
||||
mode=mode)
|
||||
|
||||
solver.solve(instance)
|
||||
assert instance.solution["x"][0] == 1.0
|
||||
assert instance.solution["x"][1] == 0.0
|
||||
assert instance.solution["x"][2] == 1.0
|
||||
assert instance.solution["x"][3] == 1.0
|
||||
assert instance.lower_bound == 1183.0
|
||||
assert instance.upper_bound == 1183.0
|
||||
assert round(instance.lp_solution["x"][0], 3) == 1.000
|
||||
assert round(instance.lp_solution["x"][1], 3) == 0.923
|
||||
assert round(instance.lp_solution["x"][2], 3) == 1.000
|
||||
assert round(instance.lp_solution["x"][3], 3) == 0.000
|
||||
assert round(instance.lp_value, 3) == 1287.923
|
||||
assert instance.found_violated_lazy_constraints == []
|
||||
assert instance.found_violated_user_cuts == []
|
||||
assert len(instance.solver_log) > 100
|
||||
|
||||
solver.fit([instance])
|
||||
solver.solve(instance)
|
||||
|
||||
# Assert solver is picklable
|
||||
with tempfile.TemporaryFile() as file:
|
||||
pickle.dump(solver, file)
|
||||
|
||||
|
||||
def test_parallel_solve():
|
||||
for internal_solver in _get_internal_solvers():
|
||||
instances = [_get_instance(internal_solver) for _ in range(10)]
|
||||
solver = LearningSolver(solver=internal_solver)
|
||||
results = solver.parallel_solve(instances, n_jobs=3)
|
||||
assert len(results) == 10
|
||||
for instance in instances:
|
||||
assert len(instance.solution["x"].keys()) == 4
|
||||
|
||||
|
||||
def test_add_components():
|
||||
solver = LearningSolver(components=[])
|
||||
solver.add(LazyConstraintsComponent())
|
||||
solver.add(LazyConstraintsComponent())
|
||||
assert len(solver.components) == 1
|
||||
assert "BranchPriorityComponent" in solver.components
|
||||
Reference in New Issue
Block a user