Move python files to root folder; remove built docs

This commit is contained in:
2020-08-29 11:42:02 -05:00
parent 741af8506b
commit 5663ced0be
116 changed files with 8 additions and 12408 deletions

View File

@@ -0,0 +1,26 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from miplearn import BasePyomoSolver, GurobiSolver, GurobiPyomoSolver, CplexPyomoSolver
from miplearn.problems.knapsack import KnapsackInstance, GurobiKnapsackInstance
def _get_instance(solver):
if issubclass(solver, BasePyomoSolver):
return KnapsackInstance(
weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.,
)
if issubclass(solver, GurobiSolver):
return GurobiKnapsackInstance(
weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.,
)
assert False
def _get_internal_solvers():
return [GurobiPyomoSolver, CplexPyomoSolver, GurobiSolver]

View File

@@ -0,0 +1,115 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import logging
from io import StringIO
import pyomo.environ as pe
from miplearn import BasePyomoSolver
from miplearn.problems.knapsack import ChallengeA
from miplearn.solvers import RedirectOutput
from . import _get_instance, _get_internal_solvers
logger = logging.getLogger(__name__)
def test_redirect_output():
import sys
original_stdout = sys.stdout
io = StringIO()
with RedirectOutput([io]):
print("Hello world")
assert sys.stdout == original_stdout
assert io.getvalue() == "Hello world\n"
def test_internal_solver_warm_starts():
for solver_class in _get_internal_solvers():
logger.info("Solver: %s" % solver_class)
instance = _get_instance(solver_class)
model = instance.to_model()
solver = solver_class()
solver.set_instance(instance, model)
solver.set_warm_start({
"x": {
0: 1.0,
1: 0.0,
2: 0.0,
3: 1.0,
}
})
stats = solver.solve(tee=True)
assert stats["Warm start value"] == 725.0
solver.set_warm_start({
"x": {
0: 1.0,
1: 1.0,
2: 1.0,
3: 1.0,
}
})
stats = solver.solve(tee=True)
assert stats["Warm start value"] is None
solver.fix({
"x": {
0: 1.0,
1: 0.0,
2: 0.0,
3: 1.0,
}
})
stats = solver.solve(tee=True)
assert stats["Lower bound"] == 725.0
assert stats["Upper bound"] == 725.0
def test_internal_solver():
for solver_class in _get_internal_solvers():
logger.info("Solver: %s" % solver_class)
instance = _get_instance(solver_class)
model = instance.to_model()
solver = solver_class()
solver.set_instance(instance, model)
stats = solver.solve_lp()
assert round(stats["Optimal value"], 3) == 1287.923
solution = solver.get_solution()
assert round(solution["x"][0], 3) == 1.000
assert round(solution["x"][1], 3) == 0.923
assert round(solution["x"][2], 3) == 1.000
assert round(solution["x"][3], 3) == 0.000
stats = solver.solve(tee=True)
assert len(stats["Log"]) > 100
assert stats["Lower bound"] == 1183.0
assert stats["Upper bound"] == 1183.0
assert stats["Sense"] == "max"
assert isinstance(stats["Wallclock time"], float)
assert isinstance(stats["Nodes"], int)
solution = solver.get_solution()
assert solution["x"][0] == 1.0
assert solution["x"][1] == 0.0
assert solution["x"][2] == 1.0
assert solution["x"][3] == 1.0
if isinstance(solver, BasePyomoSolver):
model.cut = pe.Constraint(expr=model.x[0] <= 0.5)
solver.add_constraint(model.cut)
solver.solve_lp()
assert model.x[0].value == 0.5
# def test_node_count():
# for solver in _get_internal_solvers():
# challenge = ChallengeA()
# solver.set_time_limit(1)
# solver.set_instance(challenge.test_instances[0])
# stats = solver.solve(tee=True)
# assert stats["Nodes"] > 1

View File

@@ -0,0 +1,67 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import logging
import pickle
import tempfile
from miplearn import LazyConstraintsComponent
from miplearn import LearningSolver
from . import _get_instance, _get_internal_solvers
logger = logging.getLogger(__name__)
def test_learning_solver():
for mode in ["exact", "heuristic"]:
for internal_solver in _get_internal_solvers():
logger.info("Solver: %s" % internal_solver)
instance = _get_instance(internal_solver)
solver = LearningSolver(time_limit=300,
gap_tolerance=1e-3,
threads=1,
solver=internal_solver,
mode=mode)
solver.solve(instance)
assert instance.solution["x"][0] == 1.0
assert instance.solution["x"][1] == 0.0
assert instance.solution["x"][2] == 1.0
assert instance.solution["x"][3] == 1.0
assert instance.lower_bound == 1183.0
assert instance.upper_bound == 1183.0
assert round(instance.lp_solution["x"][0], 3) == 1.000
assert round(instance.lp_solution["x"][1], 3) == 0.923
assert round(instance.lp_solution["x"][2], 3) == 1.000
assert round(instance.lp_solution["x"][3], 3) == 0.000
assert round(instance.lp_value, 3) == 1287.923
assert instance.found_violated_lazy_constraints == []
assert instance.found_violated_user_cuts == []
assert len(instance.solver_log) > 100
solver.fit([instance])
solver.solve(instance)
# Assert solver is picklable
with tempfile.TemporaryFile() as file:
pickle.dump(solver, file)
def test_parallel_solve():
for internal_solver in _get_internal_solvers():
instances = [_get_instance(internal_solver) for _ in range(10)]
solver = LearningSolver(solver=internal_solver)
results = solver.parallel_solve(instances, n_jobs=3)
assert len(results) == 10
for instance in instances:
assert len(instance.solution["x"].keys()) == 4
def test_add_components():
solver = LearningSolver(components=[])
solver.add(LazyConstraintsComponent())
solver.add(LazyConstraintsComponent())
assert len(solver.components) == 1
assert "BranchPriorityComponent" in solver.components