mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-07 09:58:51 -06:00
Move python files to root folder; remove built docs
This commit is contained in:
115
miplearn/solvers/tests/test_internal_solver.py
Normal file
115
miplearn/solvers/tests/test_internal_solver.py
Normal file
@@ -0,0 +1,115 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from io import StringIO
|
||||
|
||||
import pyomo.environ as pe
|
||||
from miplearn import BasePyomoSolver
|
||||
from miplearn.problems.knapsack import ChallengeA
|
||||
from miplearn.solvers import RedirectOutput
|
||||
|
||||
from . import _get_instance, _get_internal_solvers
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def test_redirect_output():
|
||||
import sys
|
||||
original_stdout = sys.stdout
|
||||
io = StringIO()
|
||||
with RedirectOutput([io]):
|
||||
print("Hello world")
|
||||
assert sys.stdout == original_stdout
|
||||
assert io.getvalue() == "Hello world\n"
|
||||
|
||||
|
||||
def test_internal_solver_warm_starts():
|
||||
for solver_class in _get_internal_solvers():
|
||||
logger.info("Solver: %s" % solver_class)
|
||||
instance = _get_instance(solver_class)
|
||||
model = instance.to_model()
|
||||
solver = solver_class()
|
||||
solver.set_instance(instance, model)
|
||||
solver.set_warm_start({
|
||||
"x": {
|
||||
0: 1.0,
|
||||
1: 0.0,
|
||||
2: 0.0,
|
||||
3: 1.0,
|
||||
}
|
||||
})
|
||||
stats = solver.solve(tee=True)
|
||||
assert stats["Warm start value"] == 725.0
|
||||
|
||||
solver.set_warm_start({
|
||||
"x": {
|
||||
0: 1.0,
|
||||
1: 1.0,
|
||||
2: 1.0,
|
||||
3: 1.0,
|
||||
}
|
||||
})
|
||||
stats = solver.solve(tee=True)
|
||||
assert stats["Warm start value"] is None
|
||||
|
||||
solver.fix({
|
||||
"x": {
|
||||
0: 1.0,
|
||||
1: 0.0,
|
||||
2: 0.0,
|
||||
3: 1.0,
|
||||
}
|
||||
})
|
||||
stats = solver.solve(tee=True)
|
||||
assert stats["Lower bound"] == 725.0
|
||||
assert stats["Upper bound"] == 725.0
|
||||
|
||||
|
||||
def test_internal_solver():
|
||||
for solver_class in _get_internal_solvers():
|
||||
logger.info("Solver: %s" % solver_class)
|
||||
|
||||
instance = _get_instance(solver_class)
|
||||
model = instance.to_model()
|
||||
solver = solver_class()
|
||||
solver.set_instance(instance, model)
|
||||
|
||||
stats = solver.solve_lp()
|
||||
assert round(stats["Optimal value"], 3) == 1287.923
|
||||
|
||||
solution = solver.get_solution()
|
||||
assert round(solution["x"][0], 3) == 1.000
|
||||
assert round(solution["x"][1], 3) == 0.923
|
||||
assert round(solution["x"][2], 3) == 1.000
|
||||
assert round(solution["x"][3], 3) == 0.000
|
||||
|
||||
stats = solver.solve(tee=True)
|
||||
assert len(stats["Log"]) > 100
|
||||
assert stats["Lower bound"] == 1183.0
|
||||
assert stats["Upper bound"] == 1183.0
|
||||
assert stats["Sense"] == "max"
|
||||
assert isinstance(stats["Wallclock time"], float)
|
||||
assert isinstance(stats["Nodes"], int)
|
||||
|
||||
solution = solver.get_solution()
|
||||
assert solution["x"][0] == 1.0
|
||||
assert solution["x"][1] == 0.0
|
||||
assert solution["x"][2] == 1.0
|
||||
assert solution["x"][3] == 1.0
|
||||
|
||||
if isinstance(solver, BasePyomoSolver):
|
||||
model.cut = pe.Constraint(expr=model.x[0] <= 0.5)
|
||||
solver.add_constraint(model.cut)
|
||||
solver.solve_lp()
|
||||
assert model.x[0].value == 0.5
|
||||
|
||||
|
||||
# def test_node_count():
|
||||
# for solver in _get_internal_solvers():
|
||||
# challenge = ChallengeA()
|
||||
# solver.set_time_limit(1)
|
||||
# solver.set_instance(challenge.test_instances[0])
|
||||
# stats = solver.solve(tee=True)
|
||||
# assert stats["Nodes"] > 1
|
||||
Reference in New Issue
Block a user