Move python files to root folder; remove built docs

This commit is contained in:
2020-08-29 11:42:02 -05:00
parent 741af8506b
commit 5663ced0be
116 changed files with 8 additions and 12408 deletions

View File

@@ -0,0 +1,25 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from miplearn import LearningSolver
from miplearn.problems.knapsack import KnapsackInstance
def get_test_pyomo_instances():
instances = [
KnapsackInstance(
weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.,
),
KnapsackInstance(
weights=[25., 30., 22., 18.],
prices=[500., 365., 420., 150.],
capacity=70.,
),
]
models = [instance.to_model() for instance in instances]
solver = LearningSolver()
for i in range(len(instances)):
solver.solve(instances[i], models[i])
return instances, models

View File

@@ -0,0 +1,36 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import os.path
from miplearn import LearningSolver, BenchmarkRunner
from miplearn.problems.stab import MaxWeightStableSetGenerator
from scipy.stats import randint
def test_benchmark():
# Generate training and test instances
train_instances = MaxWeightStableSetGenerator(n=randint(low=25, high=26)).generate(5)
test_instances = MaxWeightStableSetGenerator(n=randint(low=25, high=26)).generate(3)
# Training phase...
training_solver = LearningSolver()
training_solver.parallel_solve(train_instances, n_jobs=10)
# Test phase...
test_solvers = {
"Strategy A": LearningSolver(),
"Strategy B": LearningSolver(),
}
benchmark = BenchmarkRunner(test_solvers)
benchmark.fit(train_instances)
benchmark.parallel_solve(test_instances, n_jobs=2, n_trials=2)
assert benchmark.raw_results().values.shape == (12,16)
benchmark.save_results("/tmp/benchmark.csv")
assert os.path.isfile("/tmp/benchmark.csv")
benchmark = BenchmarkRunner(test_solvers)
benchmark.load_results("/tmp/benchmark.csv")
assert benchmark.raw_results().values.shape == (12,16)

View File

@@ -0,0 +1,62 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from miplearn.problems.knapsack import KnapsackInstance
from miplearn import (LearningSolver,
SolutionExtractor,
InstanceFeaturesExtractor,
VariableFeaturesExtractor,
)
import numpy as np
import pyomo.environ as pe
def _get_instances():
instances = [
KnapsackInstance(weights=[1., 2., 3.],
prices=[10., 20., 30.],
capacity=2.5,
),
KnapsackInstance(weights=[3., 4., 5.],
prices=[20., 30., 40.],
capacity=4.5,
),
]
models = [instance.to_model() for instance in instances]
solver = LearningSolver()
for (i, instance) in enumerate(instances):
solver.solve(instances[i], models[i])
return instances, models
def test_solution_extractor():
instances, models = _get_instances()
features = SolutionExtractor().extract(instances)
assert isinstance(features, dict)
assert "default" in features.keys()
assert isinstance(features["default"], np.ndarray)
assert features["default"].shape == (6, 2)
assert features["default"].ravel().tolist() == [
1., 0.,
0., 1.,
1., 0.,
1., 0.,
0., 1.,
1., 0.,
]
def test_instance_features_extractor():
instances, models = _get_instances()
features = InstanceFeaturesExtractor().extract(instances)
assert features.shape == (2,3)
def test_variable_features_extractor():
instances, models = _get_instances()
features = VariableFeaturesExtractor().extract(instances)
assert isinstance(features, dict)
assert "default" in features
assert features["default"].shape == (6,5)