parent
820a6256c2
commit
59c734f2a1
@ -0,0 +1,93 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
from typing import Optional, Any, cast
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import sklearn
|
||||||
|
|
||||||
|
from miplearn.classifiers import Classifier, Regressor
|
||||||
|
|
||||||
|
|
||||||
|
class ScikitLearnClassifier(Classifier):
|
||||||
|
"""
|
||||||
|
Wrapper for ScikitLearn classifiers, which makes sure inputs and outputs have the
|
||||||
|
correct dimensions and types.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, clf: Any) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.inner_clf = clf
|
||||||
|
self.constant: Optional[np.ndarray] = None
|
||||||
|
|
||||||
|
def fit(self, x_train: np.ndarray, y_train: np.ndarray) -> None:
|
||||||
|
super().fit(x_train, y_train)
|
||||||
|
(n_samples, n_classes) = y_train.shape
|
||||||
|
assert n_classes == 2, (
|
||||||
|
f"Scikit-learn classifiers must have exactly two classes. "
|
||||||
|
f"{n_classes} classes were provided instead."
|
||||||
|
)
|
||||||
|
|
||||||
|
# When all samples belong to the same class, sklearn's predict_proba returns
|
||||||
|
# an array with a single column. The following check avoid this strange
|
||||||
|
# behavior.
|
||||||
|
mean = cast(np.ndarray, y_train.astype(float).mean(axis=0))
|
||||||
|
if mean.max() == 1.0:
|
||||||
|
self.constant = mean
|
||||||
|
return
|
||||||
|
|
||||||
|
self.inner_clf.fit(x_train, y_train[:, 1])
|
||||||
|
|
||||||
|
def predict_proba(self, x_test: np.ndarray) -> np.ndarray:
|
||||||
|
super().predict_proba(x_test)
|
||||||
|
n_samples = x_test.shape[0]
|
||||||
|
if self.constant is not None:
|
||||||
|
return np.array([self.constant for n in range(n_samples)])
|
||||||
|
sklearn_proba = self.inner_clf.predict_proba(x_test)
|
||||||
|
if isinstance(sklearn_proba, list):
|
||||||
|
assert len(sklearn_proba) == self.n_classes
|
||||||
|
for pb in sklearn_proba:
|
||||||
|
assert isinstance(pb, np.ndarray)
|
||||||
|
assert pb.dtype in [np.float16, np.float32, np.float64]
|
||||||
|
assert pb.shape == (n_samples, 2)
|
||||||
|
proba = np.hstack([pb[:, [1]] for pb in sklearn_proba])
|
||||||
|
assert proba.shape == (n_samples, self.n_classes)
|
||||||
|
return proba
|
||||||
|
else:
|
||||||
|
assert isinstance(sklearn_proba, np.ndarray)
|
||||||
|
assert sklearn_proba.shape == (n_samples, 2)
|
||||||
|
return sklearn_proba
|
||||||
|
|
||||||
|
def clone(self) -> "ScikitLearnClassifier":
|
||||||
|
return ScikitLearnClassifier(
|
||||||
|
clf=sklearn.base.clone(self.inner_clf),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class ScikitLearnRegressor(Regressor):
|
||||||
|
"""
|
||||||
|
Wrapper for ScikitLearn regressors, which makes sure inputs and outputs have the
|
||||||
|
correct dimensions and types.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, reg: Any) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.inner_reg = reg
|
||||||
|
|
||||||
|
def fit(self, x_train: np.ndarray, y_train: np.ndarray) -> None:
|
||||||
|
super().fit(x_train, y_train)
|
||||||
|
self.inner_reg.fit(x_train, y_train)
|
||||||
|
|
||||||
|
def predict(self, x_test: np.ndarray) -> np.ndarray:
|
||||||
|
super().predict(x_test)
|
||||||
|
n_samples = x_test.shape[0]
|
||||||
|
sklearn_pred = self.inner_reg.predict(x_test)
|
||||||
|
assert isinstance(sklearn_pred, np.ndarray)
|
||||||
|
assert sklearn_pred.shape[0] == n_samples
|
||||||
|
return sklearn_pred
|
||||||
|
|
||||||
|
def clone(self) -> "ScikitLearnRegressor":
|
||||||
|
return ScikitLearnRegressor(
|
||||||
|
reg=sklearn.base.clone(self.inner_reg),
|
||||||
|
)
|
Loading…
Reference in new issue